Otwarty dostęp

Breeding of High Daptomycin-Producing Strain by Streptomycin Resistance Superposition


Zacytuj

Andersson DA, Levin BR. The biological cost of antibiotic resistance. Curr Opin Microbiol. 1999 Oct;2(5):489–493. https://doi.org/10.1016/S1369-5274(99)00005-3 Andersson DA Levin BR The biological cost of antibiotic resistance Curr Opin Microbiol 1999 Oct25489 493 https://doi.org/10.1016/S1369-5274(99)00005-310.1128/9781555815615.ch21Search in Google Scholar

Cai C, Wang Y, Zheng Y. [Ribosome engineering and microorganism secondary metabolite production] (in Chinese). Biotechnol Bull. 2012;09:51–58. https://doi.org/10.13560/j.cnki.biotech.bull.1985.2012.09.029 Cai C Wang Y Zheng Y [Ribosome engineering and microorganism secondary metabolite production] (in Chinese) Biotechnol Bull 20120951 58 https://doi.org/10.13560/j.cnki.biotech.bull.1985.2012.09.029Search in Google Scholar

Gao FX, Yu YQ, Wang KR, Xie Y, Zhang HL, Ran QP, Tian M. [Breeding of high daptomycin-producing strain by ARTP and UV mutagenesis] (in Chinese). Chin J Antibiot. 2016;41(06):425–428. https://doi.org/10.13461/j.cnki.cja.005748 Gao FX Yu YQ Wang KR Xie Y Zhang HL Ran QP Tian M [Breeding of high daptomycin-producing strain by ARTP and UV mutagenesis] (in Chinese) Chin J Antibiot 20164106425 428 https://doi.org/10.13461/j.cnki.cja.005748Search in Google Scholar

Jung D, Rozek A, Okon M, Hancock REW. Structural transitions as determinants of the action of the calcium-dependent antibiotic daptomycin. Chem Biol. 2004 Jul;11(7):949–957. https://doi.org/10.1016/j.chembiol.2004.04.020 Jung D Rozek A Okon M Hancock REW Structural transitions as determinants of the action of the calcium-dependent antibiotic daptomycin Chem Biol 2004 Jul117949 957 https://doi.org/10.1016/j.chembiol.2004.04.02010.1016/j.chembiol.2004.04.020Search in Google Scholar

Liao G, Shi T, Xie J. Regulation mechanisms underlying the biosynthesis of daptomycin and related lipopeptides. J Cell Biochem. 2012 Mar; 113(3):735–741. https://doi.org/10.1002/jcb.23414 Liao G Shi T Xie J Regulation mechanisms underlying the biosynthesis of daptomycin and related lipopeptides J Cell Biochem 2012 Mar 1133735 741 https://doi.org/10.1002/jcb.2341410.1002/jcb.23414Search in Google Scholar

Liu HH, Chen YH, Chen M. [Breeding of high avilamycin-producing strains by ribosome engineering] (in Chinese). J Agr Biotechnol. 2019a;27(07):1322–1330. Liu HH Chen YH Chen M [Breeding of high avilamycin-producing strains by ribosome engineering] (in Chinese) J Agr Biotechnol 2019a27071322 1330Search in Google Scholar

Liu J, Zhang Y, He W. [Construction of a novel carrimycin-producing strain by using CRISPR-Cas9 and ribosome engineering techniques] (in Chinese). Chin J Biotech. 2021a;37(06):2116–2126. https://doi.org/10.13345/j.cjb.200763 Liu J Zhang Y He W [Construction of a novel carrimycin-producing strain by using CRISPR-Cas9 and ribosome engineering techniques] (in Chinese) Chin J Biotech 2021a37062116 2126 https://doi.org/10.13345/j.cjb.200763Search in Google Scholar

Liu WT, Chen EZ, Yang L, Peng C, Wang Q, Xu Z, Chen DQ. Emerging resistance mechanisms for 4 types of common anti-MRSA antibiotics in Staphylococcus aureus: A comprehensive review. Microb Pathog. 2021b Jul; 156:104915. https://doi.org/10.1016/j.micpath.2021.104915 Liu WT Chen EZ Yang L Peng C Wang Q Xu Z Chen DQ Emerging resistance mechanisms for 4 types of common anti-MRSA antibiotics in Staphylococcus aureus: A comprehensive review Microb Pathog 2021b Jul 156104915 https://doi.org/10.1016/j.micpath.2021.10491510.1016/j.micpath.2021.104915Search in Google Scholar

Liu X, Zhou S, Sun K. [Study on response surface methodology for doxymycin fermentation] (in Chinese). J South-Cent Univ Natl (Nat Sci Edit). 2019b;38(01):76–80. Liu X Zhou S Sun K [Study on response surface methodology for doxymycin fermentation] (in Chinese) J South-Cent Univ Natl (Nat Sci Edit) 2019b380176 80Search in Google Scholar

Lopatniuk M, Myronovskyi M, Nottebrock A, Busche T, Kalinowski J, Ostash B, Fedorenko V, Luzhetskyy A. Effect of “ribosome engineering” on the transcription level and production of S. albus indigenous secondary metabolites. Appl Microbiol Biotechnol. 2019 Sep;103(17):7097–7110. https://doi.org/10.1007/s00253-019-10005-y Lopatniuk M Myronovskyi M Nottebrock A Busche T Kalinowski J Ostash B Fedorenko V Luzhetskyy A Effect of “ribosome engineering” on the transcription level and production of S albus indigenous secondary metabolites. Appl Microbiol Biotechnol 2019 Sep103177097 7110 https://doi.org/10.1007/s00253-019-10005-y10.1007/s00253-019-10005-ySearch in Google Scholar

Lu F, Hou Y, Li X, He L, Chu Y, Xia H, Tian Y. [Breeding of high milbemycin-producing strain by ribosomal engineering] (in Chinese). Chin J Antibiot. 2018;43(07):811–816. https://doi.org/10.13461/j.cnki.cja.006299 Lu F Hou Y Li X He L Chu Y Xia H Tian Y [Breeding of high milbemycin-producing strain by ribosomal engineering] (in Chinese) Chin J Antibiot 20184307811 816 https://doi.org/10.13461/j.cnki.cja.006299Search in Google Scholar

Matsuo T, Mori N, Sakurai A, Kanie T, Mikami Y, Uehara Y, Furukawa K. Effectiveness of daptomycin against infective endocarditis caused by highly penicillin-resistant viridans group streptococci. IDCases. 2021 Apr 5;24:e01113. https://doi.org/10.1016/j.idcr.2021.e01113 Matsuo T Mori N Sakurai A Kanie T Mikami Y Uehara Y Furukawa K Effectiveness of daptomycin against infective endocarditis caused by highly penicillin-resistant viridans group streptococci IDCases 2021 Apr 524e01113 https://doi.org/10.1016/j.idcr.2021.e0111310.1016/j.idcr.2021.e01113Search in Google Scholar

Ng IS, Ye C, Zhang Z, Lu Y, Jing K. Daptomycin antibiotic production processes in fed-batch fermentation by Streptomyces roseosporus NRRL11379 with precursor effect and medium optimization. Bioprocess Biosyst Eng. 2014 Mar;37(3):415–423. https://doi.org/10.1007/s00449-013-1007-2 Ng IS Ye C Zhang Z Lu Y Jing K Daptomycin antibiotic production processes in fed-batch fermentation by Streptomyces roseosporus NRRL11379 with precursor effect and medium optimization Bioprocess Biosyst Eng 2014 Mar373415 423 https://doi.org/10.1007/s00449-013-1007-210.1007/s00449-013-1007-2Search in Google Scholar

Nishimura K, Hosaka T, Tokuyama S, Okamoto S, Ochi K. Mutations in rsmG, encoding a 16S rRNA methyltransferase, result in low-level streptomycin resistance and antibiotic overproduction in Streptomyces coelicolor A3(2). J Bacteriol. 2007 May; 189(10):3876–3883. https://doi.org/10.1128/JB.01776-06 Nishimura K Hosaka T Tokuyama S Okamoto S Ochi K Mutations in rsmG, encoding a 16S rRNA methyltransferase, result in low-level streptomycin resistance and antibiotic overproduction in Streptomyces coelicolor A3(2) J Bacteriol 2007 May 189103876 3883 https://doi.org/10.1128/JB.01776-0610.1128/JB.01776-06Search in Google Scholar

Ochi K, Okamoto S, Tozawa Y, Inaoka T, Hosaka T, Xu J, Kurosawa K. Ribosome engineering and secondary metabolite production. Adv Appl Microbiol. 2004;56:155–184. https://doi.org/10.1016/S0065-2164(04)56005-7 Ochi K Okamoto S Tozawa Y Inaoka T Hosaka T Xu J Kurosawa K Ribosome engineering and secondary metabolite production Adv Appl Microbiol 200456155 184 https://doi.org/10.1016/S0065-2164(04)56005-710.1016/S0065-2164(04)56005-7Search in Google Scholar

Ochi K. From microbial differentiation to ribosome engineering. Biosci Biotechnol Biochem. 2007 Jun;71(6):1373–1386. https://doi.org/10.1271/bbb.70007 Ochi K From microbial differentiation to ribosome engineering Biosci Biotechnol Biochem 2007 Jun7161373 1386 https://doi.org/10.1271/bbb.7000710.1271/bbb.7000717587668Search in Google Scholar

Osorio C, Garzón L, Jaimes D, Silva E, Bustos RH. Impact on antibiotic resistance, therapeutic success, and control of side effects in therapeutic drug monitoring (TDM) of daptomycin: A scoping review. Antibiotics (Basel). 2021 Mar 5;10(3):263. https://doi.org/10.3390/antibiotics10030263 Osorio C Garzón L Jaimes D Silva E Bustos RH Impact on antibiotic resistance, therapeutic success, and control of side effects in therapeutic drug monitoring (TDM) of daptomycin: A scoping review Antibiotics (Basel) 2021 Mar 5103263 https://doi.org/10.3390/antibiotics1003026310.3390/antibiotics10030263800127433807617Search in Google Scholar

Tamehiro N, Hosaka T, Xu J, Hu H, Otake N, Ochi K. Innovative approach for improvement of an antibiotic-overproducing industrial strain of Streptomyces albus. Appl Environ Microbiol. 2003 Nov; 69(11):6412–6417. https://doi.org/10.1128/AEM.69.11.6412-6417.2003 Tamehiro N Hosaka T Xu J Hu H Otake N Ochi K Innovative approach for improvement of an antibiotic-overproducing industrial strain of Streptomyces albus Appl Environ Microbiol 2003 Nov 69116412 6417 https://doi.org/10.1128/AEM.69.11.6412-6417.200310.1128/AEM.69.11.6412-6417.200326227814602594Search in Google Scholar

Tótoli EG, Garg S, Salgado HR. Daptomycin: physicochemical, analytical, and pharmacological properties. Ther Drug Monit. 2015 Dec;37(6):699–710. https://doi.org/10.1097/FTD.0000000000000222 Tótoli EG Garg S Salgado HR Daptomycin: physicochemical, analytical, and pharmacological properties Ther Drug Monit 2015 Dec376699 710 https://doi.org/10.1097/FTD.000000000000022210.1097/FTD.000000000000022226020161Search in Google Scholar

Wang G, Hosaka T, Ochi K. Dramatic activation of antibiotic production in Streptomyces coelicolor by cumulative drug resistance mutations. Appl Environ Microbiol. 2008 May;74(9):2834–2840. https://doi.org/10.1128/AEM.02800-07 Wang G Hosaka T Ochi K Dramatic activation of antibiotic production in Streptomyces coelicolor by cumulative drug resistance mutations Appl Environ Microbiol 2008 May7492834 2840 https://doi.org/10.1128/AEM.02800-0710.1128/AEM.02800-07239487118310410Search in Google Scholar

Wang JP. [Study on screening of daptomycin producing strains and fermentation conditions] [MD Thesis] (in Chinese). Tianjin (China): Tianjin University, Department of Chemical Engineering; 2007. https://doi.org/10.7666/d.y1357552 Wang JP [Study on screening of daptomycin producing strains and fermentation conditions] [MD Thesis] (in Chinese) Tianjin (China) Tianjin University, Department of Chemical Engineering; 2007 https://doi.org/10.7666/d.y1357552Search in Google Scholar

Wang YQ, Yan YZ, Hu B, Liao JX, Tang F, Zhou H, Cao RY. [Breeding of high daptomycin producing strains and optimization of fermentation conditions] (in Chinese). Chin J Antibiot. 2020; 45(12): 1232–1237. https://doi.org/10.13461/j.cnki.cja.007055 Wang YQ Yan YZ Hu B Liao JX Tang F Zhou H Cao RY [Breeding of high daptomycin producing strains and optimization of fermentation conditions] (in Chinese) Chin J Antibiot 2020 4512 1232 1237 https://doi.org/10.13461/j.cnki.cja.007055Search in Google Scholar

Wu GY, Chen XS, Wang L, Mao ZG. [Screening of high-yield ε-poly-L-lysine producing strains through ribosome engineering] (in Chinese). Microbiol China. 2016;43(12):2744–2751. https://doi.org/10.13344/j.microbiol.china.160026 Wu GY Chen XS Wang L Mao ZG [Screening of high-yield ε-poly-L-lysine producing strains through ribosome engineering] (in Chinese) Microbiol China 201643122744 2751 https://doi.org/10.13344/j.microbiol.china.160026Search in Google Scholar

Xie Y, Yao S, Li W, Dan R, Wu G, Tong T, Chen Q. [Development and application of ribosome engineering in actinomycetes] (in Chinese). Chin J Biotech. 2022;38:546–564. https://doi.org/10.13345/j.cjb.210150 Xie Y Yao S Li W Dan R Wu G Tong T Chen Q [Development and application of ribosome engineering in actinomycetes] (in Chinese) Chin J Biotech 202238546 564 https://doi.org/10.13345/j.cjb.210150Search in Google Scholar

Xie ZP, Xu ZN, Zheng JM, Cen PL. [Determination of ammonium nitrogen in fermentation broth through indophenol blue reaction] (in Chinese). J Zhejiang Univ (Eng Sci). 2005;03:123–125. https://doi.org/10.3785/j.issn.1008-973X.2005.03.026 Xie ZP Xu ZN Zheng JM Cen PL [Determination of ammonium nitrogen in fermentation broth through indophenol blue reaction] (in Chinese) J Zhejiang Univ (Eng Sci) 200503123 125 https://doi.org/10.3785/j.issn.1008-973X.2005.03.026Search in Google Scholar

Yu G, Hu Y, Hui M, Chen L, Wang L, Liu N, Yin Y, Zhao J. Genome shuffling of Streptomyces roseosporus for improving daptomycin production. Appl Biochem Biotechnol. 2014 Mar;172(5): 2661–2669. https://doi.org/10.1007/s12010-013-0687-z Yu G Hu Y Hui M Chen L Wang L Liu N Yin Y Zhao J Genome shuffling of Streptomyces roseosporus for improving daptomycin production Appl Biochem Biotechnol 2014 Mar1725 2661 2669 https://doi.org/10.1007/s12010-013-0687-z10.1007/s12010-013-0687-z24425298Search in Google Scholar

Zhang HY. [Optimization of fermentation medium and strain breeding for titer improvement of daptomycin by Streptomyces coelicolor] [MD Thesis] (in Chinese). Baoding (China): Hebei University, Department of Life Sciences; 2021. https://doi.org/10.27103/d.cnki.ghebu.2021.000755 Zhang HY [Optimization of fermentation medium and strain breeding for titer improvement of daptomycin by Streptomyces coelicolor] [MD Thesis] (in Chinese) Baoding (China) Hebei University, Department of Life Sciences; 2021 https://doi.org/10.27103/d.cnki.ghebu.2021.000755Search in Google Scholar

Zhou J, Zhang Y. [Precursor resistance screening on mutation breeding and fed-batch fermentation for daptomycin production] (in Chinese). Chin J Antibiot 2018;43:817–823. https://doi.org/10.13461/j.cnki.cja.006300 Zhou J Zhang Y [Precursor resistance screening on mutation breeding and fed-batch fermentation for daptomycin production] (in Chinese) Chin J Antibiot 201843817 823 https://doi.org/10.13461/j.cnki.cja.006300Search in Google Scholar

Zuttion F, Colom A, Matile S, Farago D, Pompeo F, Kokavecz J, Galinier A, Sturgis J, Casuso I. High-speed atomic force microscopy highlights new molecular mechanism of daptomycin action. Nat Commun. 2020 Dec 9;11(1):6312. https://doi.org/10.1038/s41467-020-19710-z Zuttion F Colom A Matile S Farago D Pompeo F Kokavecz J Galinier A Sturgis J Casuso I High-speed atomic force microscopy highlights new molecular mechanism of daptomycin action Nat Commun 2020 Dec 91116312 https://doi.org/10.1038/s41467-020-19710-z10.1038/s41467-020-19710-z772578033298927Search in Google Scholar

eISSN:
2544-4646
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Microbiology and Virology