Otwarty dostęp

Should Bacteriophages Be Classified as Parasites or Predators?


Zacytuj

Barrios ME, Blanco Fernández MD, Cammarata RV, Torres C, Power P, Mbayed VA. Diversity of beta-lactamase-encoding genes in wastewater: bacteriophages as reporters. Arch Virol. 2021 May; 166(5):1337–1344. https://doi.org/10.1007/s00705-021-05024-y BarriosME Blanco FernándezMD CammarataRV TorresC PowerP MbayedVA Diversity of beta-lactamase-encoding genes in wastewater: bacteriophages as reporters Arch Virol 2021 May 166 5 1337 1344 https://doi.org/10.1007/s00705-021-05024-y 10.1007/s00705-021-05024-y33683473 Search in Google Scholar

Batinovic S, Wassef F, Knowler SA, Rice DTF, Stanton CR, Rose J, Tucci J, Nittami T, Vinh A, Drummond GR, et al. Bacterio phages in natural and artificial environments. Pathogens. 2019 Jul 12; 8(3):100. https://doi.org/10.3390/pathogens8030100 BatinovicS WassefF KnowlerSA RiceDTF StantonCR RoseJ TucciJ NittamiT VinhA DrummondGR Bacterio phages in natural and artificial environments Pathogens 2019 Jul 12 8 3 100 https://doi.org/10.3390/pathogens8030100 10.3390/pathogens8030100678971731336985 Search in Google Scholar

Betts A, Gifford DR, MacLean RC, King KC. Parasite diversity drives rapid host dynamics and evolution of resistance in a bacteriaphage system. Evolution. 2016 May;70(5):969–978. https://doi.org/10.1111/evo.12909 BettsA GiffordDR MacLeanRC KingKC Parasite diversity drives rapid host dynamics and evolution of resistance in a bacteriaphage system Evolution 2016 May 70 5 969 978 https://doi.org/10.1111/evo.12909 10.1111/evo.12909498209227005577 Search in Google Scholar

Bhargava K, Nath G, Bhargava A, Aseri GK, Jain N. Phage therapeutics: from promises to practices and prospectives. Appl Microbiol Biotechnol. 2021 Dec;105(24):9047–9067. https://doi.org/10.1007/s00253-021-11695-z BhargavaK NathG BhargavaA AseriGK JainN Phage therapeutics: from promises to practices and prospectives Appl Microbiol Biotechnol 2021 Dec 105 24 9047 9067 https://doi.org/10.1007/s00253-021-11695-z 10.1007/s00253-021-11695-z885234134821965 Search in Google Scholar

Boyd CM, Angermeyer A, Hays SG, Barth ZK, Patel KM, Seed KD. Bacteriophage ICP1: A persistent predator of Vibrio cholerae. Annu Rev Virol. 2021 Sep 29;8(1):285–304. https://doi.org/10.1146/annurev-virology-091919-072020 BoydCM AngermeyerA HaysSG BarthZK PatelKM SeedKD Bacteriophage ICP1: A persistent predator of Vibrio cholerae Annu Rev Virol 2021 Sep 29 8 1 285 304 https://doi.org/10.1146/annurev-virology-091919-072020 10.1146/annurev-virology-091919-072020904062634314595 Search in Google Scholar

Boyd EF. Bacteriophage-encoded bacterial virulence factors and phage-pathogenicity island interactions. Adv Virus Res. 2012; 82:91–118. https://doi.org/10.1016/B978-0-12-394621-8.00014-5 BoydEF Bacteriophage-encoded bacterial virulence factors and phage-pathogenicity island interactions Adv Virus Res 2012 82 91 118 https://doi.org/10.1016/B978-0-12-394621-8.00014-5 10.1016/B978-0-12-394621-8.00014-522420852 Search in Google Scholar

Casas V, Maloy S. Role of bacteriophage-encoded exotoxins in the evolution of bacterial pathogens. Future Microbiol. 2011 Dec;6(12): 1461–1473. https://doi.org/10.2217/fmb.11.124 CasasV MaloyS Role of bacteriophage-encoded exotoxins in the evolution of bacterial pathogens Future Microbiol 2011 Dec 6 12 1461 1473 https://doi.org/10.2217/fmb.11.124 10.2217/fmb.11.12422122442 Search in Google Scholar

Correa AMS, Howard-Varona C, Coy SR, Buchan A, Sullivan MB, Weitz JS. Revisiting the rules of life for viruses of microorganisms. Nat Rev Microbiol. 2021 Aug;19(8):501–513. https://doi.org/10.1038/s41579-021-00530-x CorreaAMS Howard-VaronaC CoySR BuchanA SullivanMB WeitzJS Revisiting the rules of life for viruses of microorganisms Nat Rev Microbiol 2021 Aug 19 8 501 513 https://doi.org/10.1038/s41579-021-00530-x 10.1038/s41579-021-00530-x33762712 Search in Google Scholar

Dragoš A, Andersen AJC, Lozano-Andrade CN, Kempen PJ, Kovács ÁT, Strube ML. Phages carry interbacterial weapons encoded by biosynthetic gene clusters. Curr Biol. 2021 Aug 23;31(16):3479–3489.e5. https://doi.org/10.1016/j.cub.2021.05.046 DragošA AndersenAJC Lozano-AndradeCN KempenPJ KovácsÁT StrubeML Phages carry interbacterial weapons encoded by biosynthetic gene clusters Curr Biol 2021 Aug 23 31 16 3479 3489.e5 https://doi.org/10.1016/j.cub.2021.05.046 10.1016/j.cub.2021.05.04634186025 Search in Google Scholar

Drew GC, Stevens EJ, King KC. Microbial evolution and transitions along the parasite-mutualist continuum. Nat Rev Microbiol. 2021 Oct;19(10):623–638. https://doi.org/10.1038/s41579-021-00550-7 DrewGC StevensEJ KingKC Microbial evolution and transitions along the parasite-mutualist continuum Nat Rev Microbiol 2021 Oct 19 10 623 638 https://doi.org/10.1038/s41579-021-00550-7 10.1038/s41579-021-00550-7805425633875863 Search in Google Scholar

Duan Y, Young R, Schnabl B. Bacteriophages and their potential for treatment of gastrointestinal diseases. Nat Rev Gastroenterol Hepatol. 2021 Nov 15. https://doi.org/10.1038/s41575-021-00536-z DuanY YoungR SchnablB Bacteriophages and their potential for treatment of gastrointestinal diseases Nat Rev Gastroenterol Hepatol 2021 Nov 15 https://doi.org/10.1038/s41575-021-00536-z 10.1038/s41575-021-00536-z896657834782783 Search in Google Scholar

Fathima B, Archer AC. Bacteriophage therapy: recent developments and applications of a renaissant weapon. Res Microbiol. 2021 Sep–Oct;172(6):103863. https://doi.org/10.1016/j.resmic.2021.103863 FathimaB ArcherAC Bacteriophage therapy: recent developments and applications of a renaissant weapon Res Microbiol 2021 Sep–Oct 172 6 103863. https://doi.org/10.1016/j.resmic.2021.103863 10.1016/j.resmic.2021.10386334293451 Search in Google Scholar

Górski A, Międzybrodzki R, Węgrzyn G, Jończyk-Matysiak E, Borysowski J, Weber-Dąbrowska B. Phage therapy: Current status and perspectives. Med Res Rev. 2020 Jan;40(1):459–463. https://doi.org/10.1002/med.21593 GórskiA MiędzybrodzkiR WęgrzynG Jończyk-MatysiakE BorysowskiJ Weber-DąbrowskaB Phage therapy: Current status and perspectives Med Res Rev 2020 Jan 40 1 459 463 https://doi.org/10.1002/med.21593 10.1002/med.2159331062882 Search in Google Scholar

Gorter FA, Hall AR, Buckling A, Scanlan PD. Parasite host range and the evolution of host resistance. J Evol Biol. 2015 May;28(5): 1119–1130. https://doi.org/10.1111/jeb.12639 GorterFA HallAR BucklingA ScanlanPD Parasite host range and the evolution of host resistance J Evol Biol 2015 May 28 5 1119 1130 https://doi.org/10.1111/jeb.12639 10.1111/jeb.1263925851735 Search in Google Scholar

Grabowski Ł, Łepek K, Stasiłojć M, Kosznik-Kwaśnicka K, Zdrojewska K, Maciąg-Dorszyńska M, Węgrzyn G, Węgrzyn A. Bacteriophage-encoded enzymes destroying bacterial cell membranes and walls, and their potential use as antimicrobial agents. Microbiol Res. 2021 Jul;248:126746. https://doi.org/10.1016/j.micres.2021.126746 GrabowskiŁ ŁepekK StasiłojćM Kosznik-KwaśnickaK ZdrojewskaK Maciąg-DorszyńskaM WęgrzynG WęgrzynA Bacteriophage-encoded enzymes destroying bacterial cell membranes and walls, and their potential use as antimicrobial agents Microbiol Res 2021 Jul 248 126746. https://doi.org/10.1016/j.micres.2021.126746 10.1016/j.micres.2021.12674633773329 Search in Google Scholar

Harada LK, Silva EC, Campos WF, Del Fiol FS, Vila M, Dąbrowska K, Krylov VN, Balcão VM. Biotechnological applications of bacteriophages: State of the art. Microbiol Res. 2018 Jul–Aug;212–213: 38–58. https://doi.org/10.1016/j.micres.2018.04.007 HaradaLK SilvaEC CamposWF Del FiolFS VilaM DąbrowskaK KrylovVN BalcãoVM Biotechnological applications of bacteriophages: State of the art Microbiol Res 2018 Jul–Aug 212–213 38 58 https://doi.org/10.1016/j.micres.2018.04.007 10.1016/j.micres.2018.04.00729853167 Search in Google Scholar

Harper DR, Abedon ST, Burrowes BH, McConville ML. Bacteriophages. Biology, technology, therapy. Cham (Switzerland): Springer, Cham; 2021. https://doi.org/10.1007/978-3-319-41986-2 HarperDR AbedonST BurrowesBH McConvilleML Bacteriophages. Biology, technology, therapy Cham (Switzerland) Springer, Cham 2021 https://doi.org/10.1007/978-3-319-41986-2 10.1007/978-3-319-41986-2 Search in Google Scholar

Harrison E, Brockhurst MA. Ecological and evolutionary benefits of temperate phage: What does or doesn’t kill you makes you stronger. Bioessays. 2017 Dec;39(12):1700112. https://doi.org/10.1002/bies.201700112 HarrisonE BrockhurstMA Ecological and evolutionary benefits of temperate phage: What does or doesn’t kill you makes you stronger Bioessays 2017 Dec 39 12 1700112. https://doi.org/10.1002/bies.201700112 10.1002/bies.20170011228983932 Search in Google Scholar

Hedrich R, Neher E. Venus flytrap: How an excitable, carnivorous plant works. Trends Plant Sci. 2018 Mar;23(3):220–234. https://doi.org/10.1016/j.tplants.2017.12.004 HedrichR NeherE Venus flytrap: How an excitable, carnivorous plant works Trends Plant Sci 2018 Mar 23 3 220 234 https://doi.org/10.1016/j.tplants.2017.12.004 10.1016/j.tplants.2017.12.00429336976 Search in Google Scholar

Hsu CL, Duan Y, Fouts DE, Schnabl B. Intestinal virome and therapeutic potential of bacteriophages in liver disease. J Hepatol. 2021 Dec;75(6):1465–1475. https://doi.org/10.1016/j.jhep.2021.08.003 HsuCL DuanY FoutsDE SchnablB Intestinal virome and therapeutic potential of bacteriophages in liver disease J Hepatol 2021 Dec 75 6 1465 1475 https://doi.org/10.1016/j.jhep.2021.08.003 10.1016/j.jhep.2021.08.003892916434437908 Search in Google Scholar

Iszatt JJ, Larcombe AN, Chan HK, Stick SM, Garratt LW, Kicic A. Phage therapy for multi-drug resistant respiratory tract infections. Viruses. 2021 Sep 11;13(9):1809. https://doi.org/10.3390/v13091809 IszattJJ LarcombeAN ChanHK StickSM GarrattLW KicicA Phage therapy for multi-drug resistant respiratory tract infections Viruses 2021 Sep 11 13 9 1809 https://doi.org/10.3390/v13091809 10.3390/v13091809 Search in Google Scholar

Jaroszewicz W, Morcinek-Orłowska J, Pierzynowska K, Gaffke L, Węgrzyn G. Phage display and other peptide display technologies. FEMS Microbiol Rev. 2021 Oct 21:fuab052. https://doi.org/10.1093/femsre/fuab052 JaroszewiczW Morcinek-OrłowskaJ PierzynowskaK GaffkeL WęgrzynG Phage display and other peptide display technologies FEMS Microbiol Rev 2021 Oct 21 fuab052 https://doi.org/10.1093/femsre/fuab052 10.1093/femsre/fuab052 Search in Google Scholar

Kortright KE, Chan BK, Koff JL, Turner PE. Phage therapy: A renewed approach to combat antibiotic-resistant bacteria. Cell Host Microbe. 2019 Feb 13;25(2):219–232. https://doi.org/10.1016/j.chom.2019.01.014 KortrightKE ChanBK KoffJL TurnerPE Phage therapy: A renewed approach to combat antibiotic-resistant bacteria Cell Host Microbe 2019 Feb 13 25 2 219 232 https://doi.org/10.1016/j.chom.2019.01.014 10.1016/j.chom.2019.01.014 Search in Google Scholar

Leung TLF, Poulin R. Parasitism, commensalism, and mutualism: Exploring the many shades of symbioses. Vie et Milieu – Life Environ. 2008;58(2):107–115. LeungTLF PoulinR Parasitism, commensalism, and mutualism: Exploring the many shades of symbioses Vie et Milieu – Life Environ 2008 58 2 107 115 Search in Google Scholar

Li Y, Austin S. The P1 plasmid in action: time-lapse photomicroscopy reveals some unexpected aspects of plasmid partition. Plasmid. 2002 Nov;48(3):174–178. https://doi.org/10.1016/s0147-619x(02)00104-x LiY AustinS The P1 plasmid in action: time-lapse photomicroscopy reveals some unexpected aspects of plasmid partition Plasmid 2002 Nov 48 3 174 178 https://doi.org/10.1016/s0147-619x(02)00104-x 10.1016/S0147-619X(02)00104-X Search in Google Scholar

Liu R, Li Z, Han G, Cun S, Yang M, Liu X. Bacteriophage ecology in biological wastewater treatment systems. Appl Microbiol Biotechnol. 2021 Jul;105(13):5299–5307. https://doi.org/10.1007/s00253-021-11414-8 LiuR LiZ HanG CunS YangM LiuX Bacteriophage ecology in biological wastewater treatment systems Appl Microbiol Biotechnol 2021 Jul 105 13 5299 5307 https://doi.org/10.1007/s00253-021-11414-8 10.1007/s00253-021-11414-834181033 Search in Google Scholar

Łoś JM, Łoś M, Węgrzyn A, Węgrzyn G. Altruism of Shiga toxin-producing Escherichia coli: recent hypothesis versus experimental results. Front Cell Infect Microbiol. 2013 Jan 4;2:166. https://doi.org/10.3389/fcimb.2012.00166 ŁośJM ŁośM WęgrzynA WęgrzynG Altruism of Shiga toxin-producing Escherichia coli: recent hypothesis versus experimental results Front Cell Infect Microbiol 2013 Jan 4 2 166 https://doi.org/10.3389/fcimb.2012.00166 10.3389/fcimb.2012.00166353965523316482 Search in Google Scholar

Łoś JM, Łoś M, Węgrzyn G. Bacteriophages carrying Shiga toxin genes: genomic variations, detection and potential treatment of pathogenic bacteria. Future Microbiol. 2011 Aug;6(8):909–924. https://doi.org/10.2217/fmb.11.70 ŁośJM ŁośM WęgrzynG Bacteriophages carrying Shiga toxin genes: genomic variations, detection and potential treatment of pathogenic bacteria Future Microbiol 2011 Aug 6 8 909 924 https://doi.org/10.2217/fmb.11.70 10.2217/fmb.11.7021861621 Search in Google Scholar

Łoś M, Czyz A, Sell E, Wegrzyn A, Neubauer P, Wegrzyn G. Bacteriophage contamination: is there a simple method to reduce its deleterious effects in laboratory cultures and biotechnological factories? J Appl Genet. 2004;45(1):111–120. ŁośM CzyzA SellE WegrzynA NeubauerP WegrzynG Bacteriophage contamination: is there a simple method to reduce its deleterious effects in laboratory cultures and biotechnological factories? J Appl Genet 2004 45 1 111 120 Search in Google Scholar

Łoś M, Węgrzyn G. Pseudolysogeny. Adv Virus Res. 2012;82: 339–349. https://doi.org/10.1016/B978-0-12-394621-8.00019-4 ŁośM WęgrzynG Pseudolysogeny Adv Virus Res 2012 82 339 349 https://doi.org/10.1016/B978-0-12-394621-8.00019-4 10.1016/B978-0-12-394621-8.00019-422420857 Search in Google Scholar

Lourenço M, Chaffringeon L, Lamy-Besnier Q, Pédron T, Campagne P, Eberl C, Bérard M, Stecher B, Debarbieux L, De Sordi L. The spatial heterogeneity of the gut limits predation and fosters coexistence of bacteria and bacteriophages. Cell Host Microbe. 2020 Sep 9;28(3):390–401.e5. https://doi.org/10.1016/j.chom.2020.06.002 LourençoM ChaffringeonL Lamy-BesnierQ PédronT CampagneP EberlC BérardM StecherB DebarbieuxL De SordiL The spatial heterogeneity of the gut limits predation and fosters coexistence of bacteria and bacteriophages Cell Host Microbe 2020 Sep 9 28 3 390 401.e5 https://doi.org/10.1016/j.chom.2020.06.002 10.1016/j.chom.2020.06.00232615090 Search in Google Scholar

Mandyam KG, Jumpponen A. Mutualism-parasitism paradigm synthesized from results of root-endophyte models. Front Microbiol. 2015 Jan 12;5:776. https://doi.org/10.3389/fmicb.2014.00776 MandyamKG JumpponenA Mutualism-parasitism paradigm synthesized from results of root-endophyte models Front Microbiol 2015 Jan 12 5 776 https://doi.org/10.3389/fmicb.2014.00776 10.3389/fmicb.2014.00776429059025628615 Search in Google Scholar

Mgomi FC, Yuan L, Chen CW, Zhang YS, Yang ZQ. Bacteriophages: A weapon against mixed-species biofilms in the food processing environment. J Appl Microbiol. 2021 Dec 21;00:1–15. https://doi.org/10.1111/jam.15421 MgomiFC YuanL ChenCW ZhangYS YangZQ Bacteriophages: A weapon against mixed-species biofilms in the food processing environment J Appl Microbiol 2021 Dec 21 00 1 15 https://doi.org/10.1111/jam.15421 10.1111/jam.1542134932868 Search in Google Scholar

Munson-McGee JH, Snyder JC, Young MJ. Archaeal viruses from high-temperature environments. Genes (Basel). 2018 Feb 27;9(3):128. https://doi.org/10.3390/genes9030128 Munson-McGeeJH SnyderJC YoungMJ Archaeal viruses from high-temperature environments Genes (Basel) 2018 Feb 27 9 3 128 https://doi.org/10.3390/genes9030128 10.3390/genes9030128586784929495485 Search in Google Scholar

Naureen Z, Dautaj A, Anpilogov K, Camilleri G, Dhuli K, Tanzi B, Maltese PE, Cristofoli F, De Antoni L, Beccari T, et al. Bacteriophages presence in nature and their role in the natural selection of bacterial populations. Acta Biomed. 2020 Nov 9;91(13-S):e2020024. https://doi.org/10.23750/abm.v91i13-S.10819 NaureenZ DautajA AnpilogovK CamilleriG DhuliK TanziB MaltesePE CristofoliF De AntoniL BeccariT Bacteriophages presence in nature and their role in the natural selection of bacterial populations Acta Biomed 2020 Nov 9 91 13-S e2020024 https://doi.org/10.23750/abm.v91i13-S.10819 Search in Google Scholar

Noureen S, Noreen S, Ghumman SA, Batool F, Bukhari SNA. The genus Cuscuta (Convolvolaceae): An updated review on indigenous uses, phytochemistry, and pharmacology. Iran J Basic Med Sci. 2019 Nov;22(11):1225–1252. https://doi.org/10.22038/ijbms.2019.35296.8407 NoureenS NoreenS GhummanSA BatoolF BukhariSNA The genus Cuscuta (Convolvolaceae): An updated review on indigenous uses, phytochemistry, and pharmacology Iran J Basic Med Sci 2019 Nov 22 11 1225 1252 https://doi.org/10.22038/ijbms.2019.35296.8407 Search in Google Scholar

Orzechowska B, Mohammed M. The war between bacteria and bacteriophages. In: Mishra M, editor. Growing and handling of bacterial cultures. London (UK): IntechOpen; 2019. https://doi.org/10.5772/intechopen.87247 OrzechowskaB MohammedM The war between bacteria and bacteriophages In: MishraM editor. Growing and handling of bacterial cultures London (UK) IntechOpen 2019 https://doi.org/10.5772/intechopen.87247 10.5772/intechopen.87247 Search in Google Scholar

Paszkowski U. Mutualism and parasitism: the yin and yang of plant symbioses. Curr Opin Plant Biol. 2006 Aug;9(4):364–370. https://doi.org/10.1016/j.pbi.2006.05.008 PaszkowskiU Mutualism and parasitism: the yin and yang of plant symbioses Curr Opin Plant Biol 2006 Aug 9 4 364 370 https://doi.org/10.1016/j.pbi.2006.05.008 10.1016/j.pbi.2006.05.00816713732 Search in Google Scholar

Pessione E. The Russian doll model: How bacteria shape successful and sustainable inter-kingdom relationships. Front Microbiol 2020 Oct 20;11:573759. https://doi.org/10.3389/fmicb.2020.573759 PessioneE The Russian doll model: How bacteria shape successful and sustainable inter-kingdom relationships Front Microbiol 2020 Oct 20 11 573759. https://doi.org/10.3389/fmicb.2020.573759 10.3389/fmicb.2020.573759760697533193180 Search in Google Scholar

Podlacha M, Grabowski Ł, Kosznik-Kawśnicka K, Zdrojewska K, Stasiłojć M, Węgrzyn G, Węgrzyn A. Interactions of bacteriophages with animal and human organisms-safety issues in the light of phage therapy. Int J Mol Sci. 2021 Aug 19;22(16):8937. https://doi.org/10.3390/ijms22168937 PodlachaM GrabowskiŁ Kosznik-KawśnickaK ZdrojewskaK StasiłojćM WęgrzynG WęgrzynA Interactions of bacteriophages with animal and human organisms-safety issues in the light of phage therapy Int J Mol Sci 2021 Aug 19 22 16 8937 https://doi.org/10.3390/ijms22168937 10.3390/ijms22168937839618234445641 Search in Google Scholar

Rybchin VN, Svarchevsky AN. The plasmid prophage N15: a linear DNA with covalently closed ends. Mol Microbiol. 1999 Sep;33(5): 895–903. https://doi.org/10.1046/j.1365-2958.1999.01533.x RybchinVN SvarchevskyAN The plasmid prophage N15: a linear DNA with covalently closed ends Mol Microbiol 1999 Sep 33 5 895 903 https://doi.org/10.1046/j.1365-2958.1999.01533.x 10.1046/j.1365-2958.1999.01533.x10476025 Search in Google Scholar

Salmond GP, Fineran PC. A century of the phage: past, present and future. Nat Rev Microbiol. 2015 Dec;13(12):777–786. https://doi.org/10.1038/nrmicro3564 SalmondGP FineranPC A century of the phage: past, present and future Nat Rev Microbiol 2015 Dec 13 12 777 786 https://doi.org/10.1038/nrmicro3564 10.1038/nrmicro356426548913 Search in Google Scholar

Srinivasiah S, Bhavsar J, Thapar K, Liles M, Schoenfeld T, Wommack KE. Phages across the biosphere: contrasts of viruses in soil and aquatic environments. Res Microbiol. 2008 Jun;159(5):349–357. https://doi.org/10.1016/j.resmic.2008.04.010 SrinivasiahS BhavsarJ ThaparK LilesM SchoenfeldT WommackKE Phages across the biosphere: contrasts of viruses in soil and aquatic environments Res Microbiol 2008 Jun 159 5 349 357 https://doi.org/10.1016/j.resmic.2008.04.010 10.1016/j.resmic.2008.04.01018565737 Search in Google Scholar

Stevens A. Predation, herbivory, and parasitism [Internet]. Nature Education Knowledge. 2010;3(10):36 [cited 2021 Nov 10]. Available from https://www.nature.com/scitable/knowledge/library/predation-herbivory-and-parasitism-13261134/ StevensA Predation, herbivory, and parasitism [Internet] Nature Education Knowledge 2010 3 10 36 [cited 2021 Nov 10]. Available from https://www.nature.com/scitable/knowledge/library/predation-herbivory-and-parasitism-13261134/ Search in Google Scholar

Tetz G, Tetz V. Bacteriophages as new human viral pathogens. Microorganisms. 2018 Jun 16;6(2):54. https://doi.org/10.3390/microorganisms6020054 TetzG TetzV Bacteriophages as new human viral pathogens Microorganisms 2018 Jun 16 6 2 54 https://doi.org/10.3390/microorganisms6020054 10.3390/microorganisms6020054602751329914145 Search in Google Scholar

Tetz GV, Ruggles KV, Zhou H, Heguy A, Tsirigos A, Tetz V. Bacteriophages as potential new mammalian pathogens. Sci Rep. 2017 Aug 1;7(1):7043. https://doi.org/10.1038/s41598-017-07278-6 TetzGV RugglesKV ZhouH HeguyA TsirigosA TetzV Bacteriophages as potential new mammalian pathogens Sci Rep 2017 Aug 1 7 1 7043 https://doi.org/10.1038/s41598-017-07278-6 10.1038/s41598-017-07278-6553920828765534 Search in Google Scholar

Thingstad TF, Pree B, Giske J, Våge S. What difference does it make if viruses are strain-, rather than species-specific? Front Microbiol. 2015 Apr 20;6:320. https://doi.org/10.3389/fmicb.2015.00320 ThingstadTF PreeB GiskeJ VågeS What difference does it make if viruses are strain-, rather than species-specific? Front Microbiol 2015 Apr 20 6 320 https://doi.org/10.3389/fmicb.2015.00320 10.3389/fmicb.2015.00320440350725941522 Search in Google Scholar

Tian F, Li J, Nazir A, Tong Y. Bacteriophage – A promising alternative measure for bacterial biofilm control. Infect Drug Resist. 2021 Jan 20;14:205–217. https://doi.org/10.2147/IDR.S290093 TianF LiJ NazirA TongY Bacteriophage – A promising alternative measure for bacterial biofilm control Infect Drug Resist 2021 Jan 20 14 205 217 https://doi.org/10.2147/IDR.S290093 10.2147/IDR.S290093782912033505163 Search in Google Scholar

Topka-Bielecka G, Dydecka A, Necel A, Bloch S, Nejman-Faleńczyk B, Węgrzyn G, Węgrzyn A. Bacteriophage-derived depolymerases against bacterial biofilm. Antibiotics (Basel). 2021 Feb 10;10(2):175. https://doi.org/10.3390/antibiotics10020175 Topka-BieleckaG DydeckaA NecelA BlochS Nejman-FaleńczykB WęgrzynG WęgrzynA Bacteriophage-derived depolymerases against bacterial biofilm Antibiotics (Basel) 2021 Feb 10 10 2 175 https://doi.org/10.3390/antibiotics10020175 10.3390/antibiotics10020175791635733578658 Search in Google Scholar

Toyofuku M, Cárcamo-Oyarce G, Yamamoto T, Eisenstein F, Hsiao C-C, Kurosawa M, Gademann K, Pilhofer M, Nomura N, Eberl L. Prophage-triggered membrane vesicle formation through peptidoglycan damage in Bacillus subtilis. Nat Commun. 2017 Sep 7;8(1):481. https://doi.org/10.1038/s41467-017-00492-w ToyofukuM Cárcamo-OyarceG YamamotoT EisensteinF HsiaoC-C KurosawaM GademannK PilhoferM NomuraN EberlL Prophage-triggered membrane vesicle formation through peptidoglycan damage in Bacillus subtilis Nat Commun 2017 Sep 7 8 1 481 https://doi.org/10.1038/s41467-017-00492-w 10.1038/s41467-017-00492-w558976428883390 Search in Google Scholar

Turnau K, Fiałkowska E, Ważny R, Rozpądek P, Tylko G, Bloch S, Nejman-Faleńczyk B, Grabski M, Węgrzyn A, Węgrzyn G. Extraordinary multi-organismal interactions involving bacteriophages, bacteria, fungi, and rotifers: Quadruple microbial trophic network in water droplets. Int J Mol Sci. 2021 Feb 22;22(4):2178. https://doi.org/10.3390/ijms22042178 TurnauK FiałkowskaE WażnyR RozpądekP TylkoG BlochS Nejman-FaleńczykB GrabskiM WęgrzynA WęgrzynG Extraordinary multi-organismal interactions involving bacteriophages, bacteria, fungi, and rotifers: Quadruple microbial trophic network in water droplets Int J Mol Sci 2021 Feb 22 22 4 2178 https://doi.org/10.3390/ijms22042178 10.3390/ijms22042178792662633671687 Search in Google Scholar

Turnbull L, Toyofuku M, Hynen AL, Kurosawa M, Pessi G, Petty NK, Osvath SR, Cárcamo-Oyarce G, Gloag ES, Shimoni R, et al. Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms. Nat Commun. 2016 Apr 14;7: 11220. https://doi.org/10.1038/ncomms11220 TurnbullL ToyofukuM HynenAL KurosawaM PessiG PettyNK OsvathSR Cárcamo-OyarceG GloagES ShimoniR Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms Nat Commun 2016 Apr 14 7 11220 https://doi.org/10.1038/ncomms11220 10.1038/ncomms11220483462927075392 Search in Google Scholar

Wandro S, Oliver A, Gallagher T, Weihe C, England W, Martiny JBH, Whiteson K. Predictable molecular adaptation of coevolving Enterococcus faecium and lytic phage EfV12-phi1. Front Microbiol. 2019 Jan 31;9:3192. https://doi.org/10.3389/fmicb.2018.03192 WandroS OliverA GallagherT WeiheC EnglandW MartinyJBH WhitesonK Predictable molecular adaptation of coevolving Enterococcus faecium and lytic phage EfV12-phi1 Front Microbiol 2019 Jan 31 9 3192 https://doi.org/10.3389/fmicb.2018.03192 10.3389/fmicb.2018.03192636544530766528 Search in Google Scholar

Zalewska-Piątek B, Piątek R. Bacteriophages as potential tools for use in antimicrobial therapy and vaccine development. Pharmaceuticals (Basel). 2021 Apr 5;14(4):331. https://doi.org/10.3390/ph14040331 Zalewska-PiątekB PiątekR Bacteriophages as potential tools for use in antimicrobial therapy and vaccine development Pharmaceuticals (Basel) 2021 Apr 5 14 4 331 https://doi.org/10.3390/ph14040331 10.3390/ph14040331806622633916345 Search in Google Scholar

Zhang Y, Li CX, Zhang XZ. Bacteriophage-mediated modulation of microbiota for diseases treatment. Adv Drug Deliv Rev. 2021 Sep; 176:113856. https://doi.org/10.1016/j.addr.2021.113856 ZhangY LiCX ZhangXZ Bacteriophage-mediated modulation of microbiota for diseases treatment Adv Drug Deliv Rev 2021 Sep 176 113856. https://doi.org/10.1016/j.addr.2021.113856 10.1016/j.addr.2021.11385634237403 Search in Google Scholar

eISSN:
2544-4646
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Microbiology and Virology