Zacytuj

Adesiji YO, Deekshit VK, Karunasagar I. Antimicrobial-resistant genes associated with Salmonella spp. isolated from human, poultry, and seafood sources. Food Sci Nutr. 2014 Jul;2(4):436–442. https://doi.org/10.1002/fsn3.119AdesijiYODeekshitVKKarunasagarI. Antimicrobial-resistant genes associated with Salmonella spp. isolated from human, poultry, and seafood sources. Food Sci Nutr. 2014Jul;2(4):436442. https://doi.org/10.1002/fsn3.119422184225473501Search in Google Scholar

Ali SS, Xia B, Liu J, Navarre WW. Silencing of foreign DNA in bacteria. Curr Opin Microbiol. 2012 Apr;15(2):175–181. https://doi.org/10.1016/j.mib.2011.12.014AliSSXiaBLiuJNavarreWW. Silencing of foreign DNA in bacteria. Curr Opin Microbiol. 2012Apr;15(2):175181. https://doi.org/10.1016/j.mib.2011.12.01422265250Search in Google Scholar

Andersson DI. Persistence of antibiotic resistant bacteria. Curr Opin Microbiol. 2003 Oct;6(5):452–456. https://doi.org/10.1016/j.mib.2003.09.001AnderssonDI. Persistence of antibiotic resistant bacteria. Curr Opin Microbiol. 2003Oct;6(5):452456. https://doi.org/10.1016/j.mib.2003.09.00114572536Search in Google Scholar

Andremont A. The future control of bacterial resistance to antimicrobial agents. Am J Infect Control. 2001 Aug;29(4):256–258. https://doi.org/10.1067/mic.2001.115672AndremontA. The future control of bacterial resistance to antimicrobial agents. Am J Infect Control. 2001Aug;29(4):256258. https://doi.org/10.1067/mic.2001.11567211486268Search in Google Scholar

Ayhan DH, Tamer YT, Akbar M, Bailey SM, Wong M, Daly SM, Greenberg DE, Toprak E. Sequence-specific targeting of bacterial resistance genes increases antibiotic efficacy. LoS Biol. 2016 Sep 15; 14(9):e1002552. https://doi.org/10.1371/journal.pbio.1002552AyhanDHTamerYTAkbarMBaileySMWongMDalySMGreenbergDEToprakE. Sequence-specific targeting of bacterial resistance genes increases antibiotic efficacy. LoS Biol. 2016Sep15; 14(9):e1002552. https://doi.org/10.1371/journal.pbio.1002552502524927631336Search in Google Scholar

Baños RC, Vivero A, Aznar S, García J, Pons M, Madrid C, Juárez A. Differential regulation of horizontally acquired and core genome genes by the bacterial modulator H-NS. PLoS Genet. 2009 Jun; 5(6): e1000513. https://doi.org/10.1371/journal.pgen.1000513BañosRCViveroAAznarSGarcíaJPonsMMadridCJuárezA. Differential regulation of horizontally acquired and core genome genes by the bacterial modulator H-NS. PLoS Genet. 2009Jun; 5(6): e1000513. https://doi.org/10.1371/journal.pgen.1000513268626719521501Search in Google Scholar

Baral B, Akhgari A, Metsä-Ketelä M. Activation of microbial secondary metabolic pathways: Avenues and challenges. Synth Syst Biotechnol. 2018 Sep 12;3(3):163–178. https://doi.org/10.1016/j.synbio.2018.09.001BaralBAkhgariAMetsä-KeteläM. Activation of microbial secondary metabolic pathways: Avenues and challenges. Synth Syst Biotechnol. 2018Sep12;3(3):163178. https://doi.org/10.1016/j.synbio.2018.09.001619051530345402Search in Google Scholar

Barlow M, Hall BG. Phylogenetic analysis shows that the OXA β-lactamase genes have been on plasmids for millions of years. J Mol Evol. 2002 Sep;55(3):314–321. https://doi.org/10.1007/s00239-002-2328-yBarlowMHallBG. Phylogenetic analysis shows that the OXA β-lactamase genes have been on plasmids for millions of years. J Mol Evol. 2002Sep;55(3):314321. https://doi.org/10.1007/s00239-002-2328-y12187384Search in Google Scholar

Bertram R, Rigali S, Wood N, Lulko AT, Kuipers OP, Titgemeyer F. Regulon of the N-acetylglucosamine utilization regulator NagR in Bacillus subtilis. J Bacteriol. 2011 Jul;193(14):3525–3536. https://doi.org/10.1128/JB.00264-11BertramRRigaliSWoodNLulkoATKuipersOPTitgemeyerF. Regulon of the N-acetylglucosamine utilization regulator NagR in Bacillus subtilis. J Bacteriol. 2011Jul;193(14):35253536. https://doi.org/10.1128/JB.00264-11313330121602348Search in Google Scholar

Brenciani A, Bacciaglia A, Vecchi M, Vitali LA, Varaldo PE, Giovanetti E. Genetic elements carrying erm(B) in Streptococcus pyogenes and association with tet(M) tetracycline resistance gene. Antimicrob Agents Chemother. 2007 Apr;51(4):1209–1216. https://doi.org/10.1128/AAC.01484-06BrencianiABacciagliaAVecchiMVitaliLAVaraldoPEGiovanettiE. Genetic elements carrying erm(B) in Streptococcus pyogenes and association with tet(M) tetracycline resistance gene. Antimicrob Agents Chemother. 2007Apr;51(4):12091216. https://doi.org/10.1128/AAC.01484-06185549617261630Search in Google Scholar

Cantón R. Antibiotic resistance genes from the environment: a perspective through newly identified antibiotic resistance mechanisms in the clinical setting. Clin Microbiol Infect. 2009 Jan;15 Suppl 1:20–25. https://doi.org/10.1111/j.1469-0691.2008.02679.xCantónR. Antibiotic resistance genes from the environment: a perspective through newly identified antibiotic resistance mechanisms in the clinical setting. Clin Microbiol Infect. 2009Jan;15Suppl 1:2025. https://doi.org/10.1111/j.1469-0691.2008.02679.xSearch in Google Scholar

Carvalho KR, Carvalho-Assef APD, Santos LG dos, Pereira MJF, Asensi MD. Occurrence of blaOXA-23 gene in imipenem-susceptible Acinetobacter baumannii. Mem Inst Oswaldo Cruz. 2011 Jun; 106(4): 505–506. https://doi.org/10.1590/S0074-02762011000400020CarvalhoKRCarvalho-AssefAPDSantosLG dosPereiraMJFAsensiMD. Occurrence of blaOXA-23 gene in imipenem-susceptible Acinetobacter baumannii. Mem Inst Oswaldo Cruz. 2011Jun; 106(4): 505506. https://doi.org/10.1590/S0074-02762011000400020Search in Google Scholar

Courvalin P. Predictable and unpredictable evolution of antibiotic resistance. J Intern Med. 2008 Jul;264(1): 4–16. https://doi.org/10.1111/j.1365-2796.2008.01940.xCourvalinP. Predictable and unpredictable evolution of antibiotic resistance. J Intern Med. 2008Jul;264(1): 416. https://doi.org/10.1111/j.1365-2796.2008.01940.xSearch in Google Scholar

Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev. 2010 Sep;74(3):417–433. https://doi.org/10.1128/MMBR.00016-10DaviesJDaviesD. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev. 2010Sep;74(3):417433. https://doi.org/10.1128/MMBR.00016-10Search in Google Scholar

Deekshit VK, Kumar BK, Rai P, Srikumar S, Karunasagar I, Karunasagar I. Detection of class 1 integrons in Salmonella Weltevreden and silent antibiotic resistance genes in some seafood-associated nontyphoidal isolates of Salmonella in south-west coast of India. J Appl Microbiol. 2012 Jun;112(6):1113–1122. https://doi.org/10.1111/j.1365-2672.2012.05290.xDeekshitVKKumarBKRaiPSrikumarSKarunasagarIKarunasagarI. Detection of class 1 integrons in Salmonella Weltevreden and silent antibiotic resistance genes in some seafood-associated nontyphoidal isolates of Salmonella in south-west coast of India. J Appl Microbiol. 2012Jun;112(6):11131122. https://doi.org/10.1111/j.1365-2672.2012.05290.xSearch in Google Scholar

Dorman CJ, Deighan P. Regulation of gene expression by histone-like proteins in bacteria. Curr Opin Genet Dev. 2003 Apr;13(2):179–184. https://doi.org/10.1016/S0959-437X(03)00025-XDormanCJDeighanP. Regulation of gene expression by histone-like proteins in bacteria. Curr Opin Genet Dev. 2003Apr;13(2):179184. https://doi.org/10.1016/S0959-437X(03)00025-XSearch in Google Scholar

Enne VI, Cassar C, Sprigings K, Woodward MJ, Bennett PM. A high prevalence of antimicrobial resistant Escherichia coli isolated from pigs and a low prevalence of antimicrobial resistant E. coli from cattle and sheep in Great Britain at slaughter. FEMS Microbiol Lett. 2008 Jan;278(2):193–199. https://doi.org/10.1111/j.1574-6968.2007.00991.xEnneVICassarCSprigingsKWoodwardMJBennettPM. A high prevalence of antimicrobial resistant Escherichia coli isolated from pigs and a low prevalence of antimicrobial resistant E. coli from cattle and sheep in Great Britain at slaughter. FEMS Microbiol Lett. 2008Jan;278(2):193199. https://doi.org/10.1111/j.1574-6968.2007.00991.x18053066Search in Google Scholar

Fernandes MR, Moura Q, Sartori L, Silva KC, Cunha MP V, Esposito F, Lopes R, Otutumi LK, Gonçalves DD, Dropa M, et al. Silent dissemination of colistin-resistant Escherichia coli in South America could contribute to the global spread of the mcr-1 gene. Euro Surveill. 2016 Apr 28;21(17):pii=30214. https://doi.org/10.2807/1560-7917.ES.2016.21.17.30214FernandesMRMouraQSartoriLSilvaKCCunha MPVEspositoFLopesROtutumiLKGonçalvesDDDropaM. Silent dissemination of colistin-resistant Escherichia coli in South America could contribute to the global spread of the mcr-1 gene. Euro Surveill. 2016Apr28;21(17):pii=30214. https://doi.org/10.2807/1560-7917.ES.2016.21.17.3021427168587Search in Google Scholar

Fields FR, Lee SW, McConnell MJ. Using bacterial genomes and essential genes for the development of new antibiotics. Biochem Pharmacol. 2017 Jun 15;134:74–86. https://doi.org/10.1016/j.bcp.2016.12.002FieldsFRLeeSWMcConnellMJ. Using bacterial genomes and essential genes for the development of new antibiotics. Biochem Pharmacol. 2017Jun15;134:7486. https://doi.org/10.1016/j.bcp.2016.12.002541129027940263Search in Google Scholar

Gal M, Brazier JS. Metronidazole resistance in Bacteroides spp. carrying nim genes and the selection of slow-growing metronidazole-resistant mutants. J Antimicrob Chemother. 2004 Jul; 54(1): 109–116. https://doi.org/10.1093/jac/dkh296GalMBrazierJS. Metronidazole resistance in Bacteroides spp. carrying nim genes and the selection of slow-growing metronidazole-resistant mutants. J Antimicrob Chemother. 2004Jul; 54(1): 109116. https://doi.org/10.1093/jac/dkh29615190033Search in Google Scholar

Gregoretti I, Lee Y-M, Goodson H V. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol. 2004 Apr 16;338(1):17–31. https://doi.org/10.1016/j.jmb.2004.02.006GregorettiILeeY-MGoodsonH V. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol. 2004Apr16;338(1):1731. https://doi.org/10.1016/j.jmb.2004.02.006Search in Google Scholar

Hall BG, Yokoyama S, Calhoun DH. Role of cryptic genes in microbial evolution. Mol Biol Evol. 1983 Dec;1(1):109–124. https://doi.org/10.1093/oxfordjournals.molbev.a040300HallBGYokoyamaSCalhounDH. Role of cryptic genes in microbial evolution. Mol Biol Evol. 1983Dec;1(1):109124. https://doi.org/10.1093/oxfordjournals.molbev.a040300Search in Google Scholar

Hamon MA, Cossart P. Histone modifications and chromatin remodeling during bacterial infections. Cell Host Microbe. 2008 Aug 14;4(2):100–109. https://doi.org/10.1016/j.chom.2008.07.009HamonMACossartP. Histone modifications and chromatin remodeling during bacterial infections. Cell Host Microbe. 2008Aug14;4(2):100109. https://doi.org/10.1016/j.chom.2008.07.009Search in Google Scholar

Hanau-Berçot B, Podglajen I, Casin I, Collatz E. An intrinsic control element for translational initiation in class 1 integrons. Mol Microbiol. 2002 Apr;44(1): 119–130. https://doi.org/10.1046/j.1365-2958.2002.02843.xHanau-BerçotBPodglajenICasinICollatzE. An intrinsic control element for translational initiation in class 1 integrons. Mol Microbiol. 2002Apr;44(1): 119130. https://doi.org/10.1046/j.1365-2958.2002.02843.xSearch in Google Scholar

Heuer H, Schmitt H, Smalla K. Antibiotic resistance gene spread due to manure application on agricultural fields. Curr Opin Microbiol. 2011 Jun;14(3):236–243. https://doi.org/10.1016/j.mib.2011.04.009HeuerHSchmittHSmallaK. Antibiotic resistance gene spread due to manure application on agricultural fields. Curr Opin Microbiol. 2011Jun;14(3):236243. https://doi.org/10.1016/j.mib.2011.04.009Search in Google Scholar

Holmes AH, Moore LSP, Sundsfjord A, Steinbakk M, Regmi S, Karkey A, Guerin PJ, Piddock LJ V. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet. 2016 Jan 9;387(10014):176–187. https://doi.org/10.1016/S0140-6736(15)00473-0HolmesAHMooreLSPSundsfjordASteinbakkMRegmiSKarkeyAGuerinPJPiddock LJV. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet. 2016Jan9;387(10014):176187. https://doi.org/10.1016/S0140-6736(15)00473-0Search in Google Scholar

Jiang Y, Yao L, Li F, Tan Z, Zhai Y, Wang L. Characterization of antimicrobial resistance of Vibrio parahaemolyticus from cultured sea cucumbers (Apostichopus japonicas). Lett Appl Microbiol. 2014 Aug;59(2):147–154. https://doi.org/10.1111/lam.12258JiangYYaoLLiFTanZZhaiYWangL. Characterization of antimicrobial resistance of Vibrio parahaemolyticus from cultured sea cucumbers (Apostichopus japonicas). Lett Appl Microbiol. 2014Aug;59(2):147154. https://doi.org/10.1111/lam.1225824684348Search in Google Scholar

Kim S-H, Lu W, Ahmadi MK, Montiel D, Ternei MA, Brady SF. Atolypenes, tricyclic bacterial sesterterpenes discovered using a multiplexed in vitro Cas9-TAR gene cluster refactoring approach. ACS Synth Biol. 2019 Jan 18;8(1):109–118. https://doi.org/10.1021/acssynbio.8b00361KimS-HLuWAhmadiMKMontielDTerneiMABradySF. Atolypenes, tricyclic bacterial sesterterpenes discovered using a multiplexed in vitro Cas9-TAR gene cluster refactoring approach. ACS Synth Biol. 2019Jan18;8(1):109118. https://doi.org/10.1021/acssynbio.8b00361654738130575381Search in Google Scholar

Kime L, Randall CP, Banda FI, Coll F, Wright J, Richardson J, Empel J, Parkhill J, O’Neill AJ. Transient silencing of antibiotic resistance by mutation represents a significant potential source of unanticipated therapeutic failure. mBio. 2019 Oct 29;10(5):e01755-19. https://doi.org/10.1128/mBio.01755-19KimeLRandallCPBandaFICollFWrightJRichardsonJEmpelJParkhillJO’NeillAJ. Transient silencing of antibiotic resistance by mutation represents a significant potential source of unanticipated therapeutic failure. mBio. 2019Oct29;10(5):e01755-19. https://doi.org/10.1128/mBio.01755-19681965731662453Search in Google Scholar

Koskiniemi S, Pränting M, Gullberg E, Näsvall J, Andersson DI. Activation of cryptic aminoglycoside resistance in Salmonella enterica. Mol Microbiol. 2011 Jun;80(6): 1464–1478. https://doi.org/10.1111/j.1365-2958.2011.07657.xKoskiniemiSPräntingMGullbergENäsvallJAnderssonDI. Activation of cryptic aminoglycoside resistance in Salmonella enterica. Mol Microbiol. 2011Jun;80(6): 14641478. https://doi.org/10.1111/j.1365-2958.2011.07657.x21507083Search in Google Scholar

Lanz R, Kuhnert P, Boerlin P. Antimicrobial resistance and resistance gene determinants in clinical Escherichia coli from different animal species in Switzerland. Vet Microbiol. 2003 Jan 2;91(1):73–84. https://doi.org/10.1016/s0378-1135(02)00263-8LanzRKuhnertPBoerlinP. Antimicrobial resistance and resistance gene determinants in clinical Escherichia coli from different animal species in Switzerland. Vet Microbiol. 2003Jan2;91(1):7384. https://doi.org/10.1016/s0378-1135(02)00263-8Search in Google Scholar

Ma M, Wang H, Yu Y, Zhang D, Liu S. Detection of antimicrobial resistance genes of pathogenic Salmonella from swine with DNA microarray. J Vet Diagn Invest. 2007 Mar;19(2):161–167. https://doi.org/10.1177/104063870701900204MaMWangHYuYZhangDLiuS. Detection of antimicrobial resistance genes of pathogenic Salmonella from swine with DNA microarray. J Vet Diagn Invest. 2007Mar;19(2):161167. https://doi.org/10.1177/10406387070190020417402610Search in Google Scholar

Magnet S, Courvalin P, Lambert T. Activation of the cryptic aac(6’)-IyAminoglycoside resistance gene of Salmonella by a chromosomal deletion generating a transcriptional fusion. J Bacteriol. 1999 Nov 1;181(21):6650–6655. https://doi.org/10.1128/JB.181.21.6650-6655.1999MagnetSCourvalinPLambertT. Activation of the cryptic aac(6’)-IyAminoglycoside resistance gene of Salmonella by a chromosomal deletion generating a transcriptional fusion. J Bacteriol. 1999Nov1;181(21):66506655. https://doi.org/10.1128/JB.181.21.6650-6655.19999412810542165Search in Google Scholar

Maisnier-Patin S, Andersson DI. Adaptation to the deleterious effects of antimicrobial drug resistance mutations by compensatory evolution. Res Microbiol. 2004 Jun;155(5):360–369. https://doi.org/10.1016/j.resmic.2004.01.019Maisnier-PatinSAnderssonDI. Adaptation to the deleterious effects of antimicrobial drug resistance mutations by compensatory evolution. Res Microbiol. 2004Jun;155(5):360369. https://doi.org/10.1016/j.resmic.2004.01.01915207868Search in Google Scholar

Martins A, Hunyadi A, Amaral L. Mechanisms of resistance in bacteria: an evolutionary approach. Open Microbiol J. 2013;7:53–58. https://doi.org/10.2174/1874285801307010053MartinsAHunyadiAAmaralL. Mechanisms of resistance in bacteria: an evolutionary approach. Open Microbiol J. 2013;7:5358. https://doi.org/10.2174/1874285801307010053361377323560029Search in Google Scholar

Nassar NT, Du X, Graedel TE. Criticality of the rare earth elements. J Ind Ecol. 2015 March;19(6):1044–1054. https://doi.org/10.1111/jiec.12237NassarNTDuXGraedelTE. Criticality of the rare earth elements. J Ind Ecol. 2015March;19(6):10441054. https://doi.org/10.1111/jiec.12237Search in Google Scholar

Navarre WW, Porwollik S, Wang Y, McClelland M, Rosen H, Libby SJ, Fang FC. Selective silencing of foreign DNA with low GC content by the H-NS protein in Salmonella. Science. 2006 Jul 14; 313(5784):236–238. https://doi.org/10.1126/science.1128794NavarreWWPorwollikSWangYMcClellandMRosenHLibbySJFangFC. Selective silencing of foreign DNA with low GC content by the H-NS protein in Salmonella. Science. 2006Jul14; 313(5784):236238. https://doi.org/10.1126/science.112879416763111Search in Google Scholar

Nesme J, Simonet P. The soil resistome: a critical review on antibiotic resistance origins, ecology and dissemination potential in telluric bacteria. Environ Microbiol. 2015 Apr;17(4):913–930. https://doi.org/10.1111/1462-2920.12631NesmeJSimonetP. The soil resistome: a critical review on antibiotic resistance origins, ecology and dissemination potential in telluric bacteria. Environ Microbiol. 2015Apr;17(4):913930. https://doi.org/10.1111/1462-2920.1263125286745Search in Google Scholar

Nobel Lectures. Physiology or Medicine 1942–1962. Elsevier Publishing Company, Amsterdam-London-New York, 1964.Nobel Lectures. Physiology or Medicine 1942–1962. Elsevier Publishing Company, Amsterdam-London-New York, 1964.Search in Google Scholar

Ochi K, Hosaka T. New strategies for drug discovery: activation of silent or weakly expressed microbial gene clusters. Appl Microbiol Biotechnol. 2013 Jan;97(1):87–98. https://doi.org/10.1007/s00253-012-4551-9OchiKHosakaT. New strategies for drug discovery: activation of silent or weakly expressed microbial gene clusters. Appl Microbiol Biotechnol. 2013Jan;97(1):8798. https://doi.org/10.1007/s00253-012-4551-9353697923143535Search in Google Scholar

Okada BK, Seyedsayamdost MR. Antibiotic dialogues: induction of silent biosynthetic gene clusters by exogenous small molecules. FEMS Microbiol Rev. 2017 Jan;41(1):19–33. https://doi.org/10.1093/femsre/fuw035OkadaBKSeyedsayamdostMR. Antibiotic dialogues: induction of silent biosynthetic gene clusters by exogenous small molecules. FEMS Microbiol Rev. 2017Jan;41(1):1933. https://doi.org/10.1093/femsre/fuw035523371627576366Search in Google Scholar

Park BH, Hendricks M, Malamy MH, Tally FP, Levy SB. Cryptic tetracycline resistance determinant (class F) from Bacteroides fragilis mediates resistance in Escherichia coli by actively reducing tetracycline accumulation. Antimicrob Agents Chemother. 1987 Nov; 31(11):1739–1743. https://doi.org/10.1128/AAC.31.11.1739ParkBHHendricksMMalamyMHTallyFPLevySB. Cryptic tetracycline resistance determinant (class F) from Bacteroides fragilis mediates resistance in Escherichia coli by actively reducing tetracycline accumulation. Antimicrob Agents Chemother. 1987Nov; 31(11):17391743. https://doi.org/10.1128/AAC.31.11.17391750313324960Search in Google Scholar

Perron GG, Whyte L, Turnbaugh PJ, Goordial J, Hanage WP, Dantas G, Desai MM. Functional characterization of bacteria isolated from ancient arctic soil exposes diverse resistance mechanisms to modern antibiotics. PLoS One. 2015 Mar 25;10(3):e0069533. https://doi.org/10.1371/journal.pone.0069533PerronGGWhyteLTurnbaughPJGoordialJHanageWPDantasGDesaiMM. Functional characterization of bacteria isolated from ancient arctic soil exposes diverse resistance mechanisms to modern antibiotics. PLoS One. 2015Mar25;10(3):e0069533. https://doi.org/10.1371/journal.pone.0069533437394025807523Search in Google Scholar

Picão RC, Carrara-Marroni FE, Gales AC, Venâncio EJ, Xavier DE, Tognim MCB, Pelayo JS. Metallo-β-lactamase-production in meropenem-susceptible Pseudomonas aeruginosa isolates: risk for silent spread. Mem Inst Oswaldo Cruz. 2012 Sep;107(6):747–751. https://doi.org/10.1590/S0074-02762012000600007PicãoRCCarrara-MarroniFEGalesACVenâncioEJXavierDETognimMCBPelayoJS. Metallo-β-lactamase-production in meropenem-susceptible Pseudomonas aeruginosa isolates: risk for silent spread. Mem Inst Oswaldo Cruz. 2012Sep;107(6):747751. https://doi.org/10.1590/S0074-02762012000600007Search in Google Scholar

Rigali S, Anderssen S, Naômé A, van Wezel GP. Cracking the regulatory code of biosynthetic gene clusters as a strategy for natural product discovery. Biochem Pharmacol. 2018 Jul;153:24–34. https://doi.org/10.1016/j.bcp.2018.01.007RigaliSAnderssenSNaôméAvan WezelGP. Cracking the regulatory code of biosynthetic gene clusters as a strategy for natural product discovery. Biochem Pharmacol. 2018Jul;153:2434. https://doi.org/10.1016/j.bcp.2018.01.00729309762Search in Google Scholar

Rowe-Magnus DA, Guerout A-M, Mazel D. Bacterial resistance evolution by recruitment of super-integron gene cassettes. Mol Microbiol. 2002 Mar;43(6):1657–1669. https://doi.org/10.1046/j.1365-2958.2002.02861.xRowe-MagnusDAGueroutA-MMazelD. Bacterial resistance evolution by recruitment of super-integron gene cassettes. Mol Microbiol. 2002Mar;43(6):16571669. https://doi.org/10.1046/j.1365-2958.2002.02861.x11952913Search in Google Scholar

Safi H, Lingaraju S, Amin A, Kim S, Jones M, Holmes M, McNeil M, Peterson SN, Chatterjee D, Fleischmann R, et al. Evolution of high-level ethambutol-resistant tuberculosis through interacting mutations in decaprenylphosphoryl-β-D-arabinose biosynthetic and utilization pathway genes. Nat Genet. 2013 Oct; 45(10):1190–1197. https://doi.org/10.1038/ng.2743SafiHLingarajuSAminAKimSJonesMHolmesMMcNeilMPetersonSNChatterjeeDFleischmannR. Evolution of high-level ethambutol-resistant tuberculosis through interacting mutations in decaprenylphosphoryl-β-D-arabinose biosynthetic and utilization pathway genes. Nat Genet. 2013Oct; 45(10):11901197. https://doi.org/10.1038/ng.2743610329323995136Search in Google Scholar

Salipante SJ, Barlow M, Hall BG. GeneHunter, a transposon tool for identification and isolation of cryptic antibiotic resistance genes. Antimicrob Agents Chemother. 2003 Dec;47(12):3840–3845. https://doi.org/10.1128/AAC.47.12.3840-3845.2003SalipanteSJBarlowMHallBG. GeneHunter, a transposon tool for identification and isolation of cryptic antibiotic resistance genes. Antimicrob Agents Chemother. 2003Dec;47(12):38403845. https://doi.org/10.1128/AAC.47.12.3840-3845.200329622814638492Search in Google Scholar

Sánchez S, Demain AL. Antibiotics: Current innovations and future trends. Norfolk (UK): Caister Academic Press; 2015. https://doi.org/10.21775/9781908230546SánchezSDemainAL. Antibiotics: Current innovations and future trends. Norfolk (UK): Caister Academic Press; 2015. https://doi.org/10.21775/9781908230546Search in Google Scholar

Seyedsayamdost MR. High-throughput platform for the discovery of elicitors of silent bacterial gene clusters. Proc Natl Acad Sci USA. 2014 May 20;111(20):7266–7271. https://doi.org/10.1073/pnas.1400019111SeyedsayamdostMR. High-throughput platform for the discovery of elicitors of silent bacterial gene clusters. Proc Natl Acad Sci USA. 2014May20;111(20):72667271. https://doi.org/10.1073/pnas.1400019111403422924808135Search in Google Scholar

Smith DL, Dushoff J, Morris Jr JG. Agricultural antibiotics and human health. PLoS Med. 2005 Aug;2(8):e232. https://doi.org/10.1371/journal.pmed.0020232SmithDLDushoffJMorris JrJG. Agricultural antibiotics and human health. PLoS Med. 2005Aug;2(8):e232. https://doi.org/10.1371/journal.pmed.0020232116755715984910Search in Google Scholar

Sunde M, Norström M. The genetic background for streptomycin resistance in Escherichia coli influences the distribution of MICs. J Antimicrob Chemother. 2005 Jul;56(1):87–90. https://doi.org/10.1093/jac/dki150SundeMNorströmM. The genetic background for streptomycin resistance in Escherichia coli influences the distribution of MICs. J Antimicrob Chemother. 2005Jul;56(1):8790. https://doi.org/10.1093/jac/dki150Search in Google Scholar

Tamburini E, Mastromei G. Do bacterial cryptic genes really exist? Res Microbiol. 2000 Apr;151(3):179–182. https://doi.org/10.1016/s0923-2508(00)00137-6TamburiniEMastromeiG. Do bacterial cryptic genes really exist?Res Microbiol. 2000Apr;151(3):179182. https://doi.org/10.1016/s0923-2508(00)00137-6Search in Google Scholar

Tanaka Y, Hosaka T, Ochi K. Rare earth elements activate the secondary metabolite-biosynthetic gene clusters in Streptomyces coelicolor A3 (2). J Antibiot 2010 Aug;63(8):477–481. https://doi.org/10.1038/ja.2010.53TanakaYHosakaTOchiK. Rare earth elements activate the secondary metabolite-biosynthetic gene clusters in Streptomyces coelicolor A3 (2). J Antibiot2010Aug;63(8):477481. https://doi.org/10.1038/ja.2010.5320551989Search in Google Scholar

Temme K, Zhao D, Voigt CA. Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca. Proc Natl Acad Sci USA. 2012 May 1;109(18):7085–7090. https://doi.org/10.1073/pnas.1120788109TemmeKZhaoDVoigtCA. Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca. Proc Natl Acad Sci USA. 2012May1;109(18):70857090. https://doi.org/10.1073/pnas.1120788109334500722509035Search in Google Scholar

Timmusk S, Kim S-B, Nevo E, Abd El Daim I, Ek B, Bergquist J, Behers L. Sfp-type PPTase inactivation promotes bacterial biofilm formation and ability to enhance wheat drought tolerance. Front Microbiol. 2015 May 21;6:387. https://doi.org/10.3389/fmicb.2015.00387TimmuskSKimS-BNevoEAbd El DaimIEkBBergquistJBehersL. Sfp-type PPTase inactivation promotes bacterial biofilm formation and ability to enhance wheat drought tolerance. Front Microbiol. 2015May21;6:387. https://doi.org/10.3389/fmicb.2015.00387443957426052312Search in Google Scholar

Toprak E, Veres A, Michel J-B, Chait R, Hartl DL, Kishony R. Evolutionary paths to antibiotic resistance under dynamically sustained drug selection. Nat Genet. 2012 Jan;44(1):101–105. https://doi.org/10.1038/ng.1034ToprakEVeresAMichelJ-BChaitRHartlDLKishonyR. Evolutionary paths to antibiotic resistance under dynamically sustained drug selection. Nat Genet. 2012Jan;44(1):101105. https://doi.org/10.1038/ng.1034353473522179135Search in Google Scholar

von Wintersdorff CJH, Penders J, Van Niekerk JM, Mills ND, Majumder S, Van Alphen LB, Savelkoul PHM, Wolffs PFG. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front Microbiol. 2016 Feb 19;7:173. https://doi.org/10.3389/fmicb.2016.00173von WintersdorffCJHPendersJVan NiekerkJMMillsNDMajumderSVan AlphenLBSavelkoulPHMWolffsPFG. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front Microbiol. 2016Feb19;7:173. https://doi.org/10.3389/fmicb.2016.00173475926926925045Search in Google Scholar

Walsh TR. The emergence and implications of metallo-β-lactamases in Gram-negative bacteria. Clin Microbiol Infect. 2005 Nov;11 (Suppl 6):2–9. https://doi.org/10.1111/j.1469-0691.2005.01264.xWalshTR. The emergence and implications of metallo-β-lactamases in Gram-negative bacteria. Clin Microbiol Infect. 2005Nov;11 (Suppl 6):29. https://doi.org/10.1111/j.1469-0691.2005.01264.x16209700Search in Google Scholar

Wright GD. The antibiotic resistome: the nexus of chemical and genetic diversity. Nat Rev Microbiol. 2007 Mar;5(3):175–186. https://doi.org/10.1038/nrmicro1614WrightGD. The antibiotic resistome: the nexus of chemical and genetic diversity. Nat Rev Microbiol. 2007Mar;5(3):175186. https://doi.org/10.1038/nrmicro161417277795Search in Google Scholar

Xu F, Nazari B, Moon K, Bushin LB, Seyedsayamdost MR. Discovery of a cryptic antifungal compound from Streptomyces albus J1074 using high-throughput elicitor screens. J Am Chem Soc. 2017 Jul 12; 139(27):9203–9212. https://doi.org/10.1021/jacs.7b02716XuFNazariBMoonKBushinLBSeyedsayamdostMR. Discovery of a cryptic antifungal compound from Streptomyces albus J1074 using high-throughput elicitor screens. J Am Chem Soc. 2017Jul12; 139(27):92039212. https://doi.org/10.1021/jacs.7b02716561773528590725Search in Google Scholar

Yamanaka K, Reynolds KA, Kersten RD, Ryan KS, Gonzalez DJ, Nizet V, Dorrestein PC, Moore BS. Direct cloning and refactoring of a silent lipopeptide biosynthetic gene cluster yields the antibiotic taromycin A. Proc Natl Acad Sci USA. 2014 Feb 4;111(5):1957–1962. https://doi.org/10.1073/pnas.1319584111YamanakaKReynoldsKAKerstenRDRyanKSGonzalezDJNizetVDorresteinPCMooreBS. Direct cloning and refactoring of a silent lipopeptide biosynthetic gene cluster yields the antibiotic taromycin A. Proc Natl Acad Sci USA. 2014Feb4;111(5):19571962. https://doi.org/10.1073/pnas.1319584111391884124449899Search in Google Scholar

Yan X, Zhang B, Tian W, Dai Q, Zheng X, Hu K, Liu X, Deng Z, Qu X. Puromycin A, B and C, cryptic nucleosides identified from Streptomyces alboniger NRRL B-1832 by PPtase-based activation. Synth Syst Biotechnol. 2018 March;3(1):76–80. https://doi.org/10.1016/j.synbio.2018.02.001YanXZhangBTianWDaiQZhengXHuKLiuXDengZQuX. Puromycin A, B and C, cryptic nucleosides identified from Streptomyces alboniger NRRL B-1832 by PPtase-based activation. Synth Syst Biotechnol. 2018March;3(1):7680. https://doi.org/10.1016/j.synbio.2018.02.001588424729911201Search in Google Scholar

Yang W, Moore IF, Koteva KP, Bareich DC, Hughes DW, Wright GD. TetX is a flavin-dependent monooxygenase conferring resistance to tetracycline antibiotics. J Biol Chem. 2004 Dec 10; 279(50): 52346–52352. https://doi.org/10.1074/jbc.M409573200YangWMooreIFKotevaKPBareichDCHughesDWWrightGD. TetX is a flavin-dependent monooxygenase conferring resistance to tetracycline antibiotics. J Biol Chem. 2004Dec10; 279(50): 5234652352. https://doi.org/10.1074/jbc.M40957320015452119Search in Google Scholar

Zhang X, Hindra, Elliot MA. Unlocking the trove of metabolic treasures: activating silent biosynthetic gene clusters in bacteria and fungi. Curr Opin Microbiol. 2019 Oct;51:9–15. https://doi.org/10.1016/j.mib.2019.03.003ZhangXHindraElliotMA. Unlocking the trove of metabolic treasures: activating silent biosynthetic gene clusters in bacteria and fungi. Curr Opin Microbiol. 2019Oct;51:915. https://doi.org/10.1016/j.mib.2019.03.00330999085Search in Google Scholar

Zhao S, White DG, Ge B, Ayers S, Friedman S, English L, Wagner D, Gaines S, Meng J. Identification and characterization of integron-mediated antibiotic resistance among Shiga toxin-producing Escherichia coli isolates. Appl Environ Microbiol. 2001 Apr;67(4):1558–1564. https://doi.org/10.1128/AEM.67.4.1558-1564.2001ZhaoSWhiteDGGeBAyersSFriedmanSEnglishLWagnerDGainesSMengJ. Identification and characterization of integron-mediated antibiotic resistance among Shiga toxin-producing Escherichia coli isolates. Appl Environ Microbiol. 2001Apr;67(4):15581564. https://doi.org/10.1128/AEM.67.4.1558-1564.20019276911282605Search in Google Scholar

eISSN:
2544-4646
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Microbiology and Virology