Otwarty dostęp

The effect of development time on phytochemical characteristics of red mizuna (Brassica rapa L. var. nipposinica) sprouts

  
12 mar 2024

Zacytuj
Pobierz okładkę

Akter M., Rahman M., Ullah A.K.M., Sikder M., Hosokawa T., Saito T., Kurasaki M., 2018. Brassica rapa var. japonica leaf extract mediated green synthesis of crystalline silver nanoparticles and evaluation of their stability, cytotoxicity and antibacterial activity. Journal of Inorganic and Organometallic Polymers and Materials, 28(4): 1483-1493. Search in Google Scholar

Al Mijan M., Sim W.J., Lim T.G., 2021. Physiological effects of green-colored food-derived bioactive compounds on cancer. Applied Sciences, 11(23): 11288, https://doi.org/10.3390/app112311288. Search in Google Scholar

Aloo S.O., Ofosu F.K., Daliri E.B.M., Oh D.H., 2021. UHPLC-ESI-QTOF-MS/MS metabolite profiling of the antioxidant and antidiabetic activities of red cabbage and broccoli seeds and sprouts. Antioxidants, 10(6): 852, https://doi.org/10.3390/antiox10060852. Search in Google Scholar

Aloo S.O., Ofosu F.K., Kilonzi S.M., Shabbir U., Oh D.H., 2021. Edible plant sprouts: Health benefits, trends, and opportunities for novel exploration. Nutrients, 13(8): 2882, https://doi.org/10.3390/nu13082882. Search in Google Scholar

Alumkal J.J., Slottke R., Schwartzman J., Cherala G., Munar M., Graff J.N., Beer M.T., Ryan Ch.W., Koop D.R., Gibbs A., Gao L., Flamatios J.F., Tucker E., Kleinschmidt R., Mori M., 2015. A phase II study of sulforaphane-rich broccoli sprout extracts in men with recurrent prostate cancer. Investigational new drugs, 33(2): 480-489, doi: 10.1007/s10637-014-0189-z. Search in Google Scholar

Baenas N., Marhuenda J., García-Viguera C., Zafrilla P., Moreno D.A., 2019. Influence of cooking methods on glucosinolates and isothiocyanates content in novel cruciferous foods. Foods, 8(7): 257, doi: 10.3390/foods8070257. Search in Google Scholar

Baenas N., Moreno D.A., García-Viguera C., 2012. Selecting sprouts of Brassicaceae for optimum phytochemical composition. Journal of agricultural and food chemistry, 60(45), 11409-11420, https://doi.org/10.1021/jf302863c. Search in Google Scholar

Bennett R.N., Mellon F.A., Kroon P.A., 2004. Screening crucifer seeds as sources of specific intact glucosinolates using ion-pair high-performance liquid chromatography negative ion electro-spray mass spectrometry. Journal of agricultural and food chemistry, 52(3): 428-438, doi: 10.1021/jf030530p. Search in Google Scholar

Cieślik E., Cieślik I., Borowski M., 2017. Charakterystyka właściwości prozdrowotnych glukozynolanów. Zeszyty Problemowe Postępów Nauk Rolniczych, 588: 3–14, doi: 10.22630/ZPPNR.2017.588.1. Search in Google Scholar

Doniec J., Florkiewicz A., Dziadek K., Filipiak-Florkiewicz A., 2022. Hydrothermal treatment effect on antioxidant activity and polyphenols concentration and profile of brussels sprouts (Bras-sica oleracea var. gemmifera) in an in vitro simulated gastrointestinal digestion model. Antioxidants, 11(3): 446, https://doi.org/10.3390/antiox11030446. Search in Google Scholar

Ebert A.W., 2022. Sprouts and Microgreens—Novel Food Sources for Healthy Diets. Plants, 11: 571, doi: 10.3390/plants11040571. Search in Google Scholar

Ferreres F., Sousa C., Pereira D.M., Valentão P., Taveira M., Martins A., Pereira M.D., Seabra M.R., Andrade P.B., 2009. Screening of antioxidant phenolic compounds produced by in vitro shoots of Brassica oleracea L. var. costata DC. Combinatorial Chemistry & High Throughput Screening, 12(3): 230-240, doi: 10.2174/138620709787581756. Search in Google Scholar

Garcia-Ibañez P., Núñez-Sánchez M.A., Oliva-Bolarín A., Martínez-Sánchez M.A., Ramos-Molina B., Ruiz-Alcaraz A.J., Moreno D.A., 2023. Anti-inflammatory potential of digested Brassica sprout extracts in human macrophage-like HL-60 cells. Food & Function, 1. Search in Google Scholar

Gawlik-Dziki U., Świeca M., Dziki D., Sęczyk Ł., Złotek U., Różyło R., Kaszuba K., Ryszawy D., Czyż J., 2014. Anti-cancer and antioxidant activity of bread enriched with broccoli sprouts. BioMed Research International, 2014:2014:608053, doi: 10.1155/2014/608053. Search in Google Scholar

Giorgetti L., Giorgi G., Cherubini E., Gervasi P.G., Della Croce C.M., Longo V., Bellani L., 2018. Screening and identification of major phytochemical compounds in seeds, sprouts and leaves of Tuscan black kale Brassica oleracea (L.) ssp acephala (DC) var. sabellica L. Natural Product Research, 32(14): 1617-1626, https://doi.org/10.1080/14786419.2017.1392953. Search in Google Scholar

Hill C.R., Shafaei A., Balmer L., Lewis J.R., Hodgson J.M., Millar A.H., Blekkenhorst L.C., 2022. Sulfur compounds: From plants to humans and their role in chronic disease prevention. Critical Reviews in Food Science and Nutrition, 63(27): 8616-8638, doi: 10.1080/10408398.2022.2057915. Search in Google Scholar

Kalisz A., Sękara A., Kostrzewa J., 2012. Effect of growing date and cultivar on the morphological parameters and yield of Bras-sica rapa var. japonica. Acta Scientiarum Polonorum, Hortorum Cultus, 11(3): 131-143. Search in Google Scholar

Krzepiłko A., Skwaryło-Bednarz B., Zych-Wężyk I., 2017. Mustard Germs - Functional Food. Aura, 7: 14-16. (in Polish) Search in Google Scholar

Kusznierewicz B., Iori R., Piekarska A., Namieśnik J., Bartoszek A., 2013. Convenient identification of desulfoglucosinolates on the basis of mass spectra obtained during liquid chromatography–diode array–electrospray ionisation mass spectrometry analysis: Method verification for sprouts of different Brassicaceae species extracts. Journal of Chromatography A, 1278: 108-115. Search in Google Scholar

Le T.N., Luong H.Q., Li H.P., Chiu C.H., Hsieh P.C., 2019. Broccoli (Brassica oleracea L. var. italica) sprouts as the potential food source for bioactive properties: A comprehensive study on in vitro disease models. Foods, 8(11), 532, 14 pp., doi: 10.3390/foods8110532. Search in Google Scholar

Lee J., Kim J., Lee J., 2023. Comparative responses of sulforaphene contents between radish (Raphanus sativus L.) and Baemuchae (xBrassicoraphanus) during seed development. Horticulture, Environment, and Biotechnology, 64: 895-903, https://doi.org/10.1007/s13580-023-00534-x. Search in Google Scholar

Lewicki P.P., 2010. Kiełki nasion jako źródło cennych składników odżywczych. ŻYWNOŚĆ. Nauka. Technologia. Jakość, 6(73): 18-33. Search in Google Scholar

Li Z., Lee H.W., Liang X., Liang D., Wang Q., Huang D., Ong C.N., 2018. Profiling of phenolic compounds and antioxidant activity of 12 cruciferous vegetables. Molecules, 23(5), 1139, doi: 10.3390/molecules23051139. Search in Google Scholar

Llorach R., Gil-Izquierdo A., Ferreres F., Tomás-Barberán F.A., 2003. HPLC-DAD-MS/MS ESI characterization of unusual highly glycosylated acylated flavonoids from cauliflower (Brassica oleracea L. var. botrytis) agroindustrial byproducts. Journal of Agricultural and Food Chemistry, 51(13): 3895-3899, doi: 10.1021/jf030077h. Search in Google Scholar

Maina S., Misinzo G., Bakari G., Kim H.Y., 2020. Human, animal and plant health benefits of glucosinolates and strategies for enhanced bioactivity: A systematic review. Molecules, 25(16), 3682, doi: 10.3390/molecules25163682. Search in Google Scholar

Mayengbam S., Aachary A., Thiyam-Holländer U., 2014. Endogenous phenolics in hulls and cotyledons of mustard and canola: A comparative study on its sinapates and antioxidant capacity. Anti-oxidants, 3(3): 544-558, https://doi.org/10.3390/antiox3030544. Search in Google Scholar

Melim C., Lauro M.R., Pires I.M., Oliveira P.J., Cabral C., 2022. The role of glucosinolates from cruciferous vegetables (Brassicaceae) in gastrointestinal cancers: From prevention to therapeutics. Pharmaceutics, 14(1), 190, https://doi.org/10.3390/pharmaceutics14010190. Search in Google Scholar

Moreno D.A., Pérez-Balibrea S., Ferreres F., Gil-Izquierdo Á., García-Viguera C., 2010. Acylated anthocyanins in broccoli sprouts. Food Chemistry, 123(2): 358-363, https://doi.org/10.1016/j.foodchem.2010.04.044. Search in Google Scholar

Nićiforović N., Abramovič H., 2014. Sinapic acid and its derivatives: natural sources and bioactivity. Comprehensive Reviews in Food Science and Food Safety, 13(1): 34-51, doi: 10.1111/1541-4337.12041. Search in Google Scholar

Okada M., Okada Y., 2016. Potential properties of plant sprout extracts on amyloid β. Biochemistry Research International, 2016, doi: 10.1155/2016/9347468. Search in Google Scholar

Olszewska M. A., Granica S., Kolodziejczyk-Czepas J., Magiera A., Czerwińska M.E., Nowak P., Rutkowska M., Wasiński P., Owczarek A., 2020. Variability of sinapic acid derivatives during germination and their contribution to antioxidant and anti-inflammatory effects of broccoli sprouts on human plasma and human peripheral blood mononuclear cells. Food & Function, 11(8): 7231-7244. Search in Google Scholar

Ortega-Hernández E., Antunes-Ricardo M., Jacobo-Velázquez D.A., 2021. Improving the healthbenefits of kales (Brassica oleracea L. var. acephala DC) through the application of controlled abiotic stresses: A Review. Plants, 10(12), 2629, https://doi.org/10.3390/plants10122629. Search in Google Scholar

Pająk P., Socha R., Gałkowska D., Rożnowski J., Fortuna T., 2014. Phenolic profile and antioxidant activity in selected seeds and sprouts. Food Chemistry, 143: 300-306, https://doi.org/10.1016/j.foodchem.2013.07.064. Search in Google Scholar

Park C.H., Bong S.J., Lim C.J., Kim J.K., Park S.U., 2020. Transcriptome analysis and metabolic profiling of green and red mizuna (Brassica rapa L. var. japonica). Foods, 9(8), 1079, doi: 10.3390/foods9081079. Search in Google Scholar

Pecio Ł., Kozachok S., Saber F.R., Garcia-Marti M., El-Amier Y., Mahrous E.A., Świątek Ł., Boguszewska A., Skiba A., Elosaily A.H., Skalicka-Woźniak K., Simal-Gandara J., 2023. Metabolic profiling of Ochradenus baccatus Delile. utilizing UHPLC-HRESIMS in relation to the in vitro biological investigations. Food Chemistry, 412, 135587, doi: 10.1016/j.food-chem.2023.135587. Search in Google Scholar

Placines C., Castañeda-Loaiza V., João Rodrigues M., Pereira C.G., Stefanucci A., Mollica A., Zengin G., Llorent-Martinez E.J., Castilho P.C., Custódio A.L., 2020. Phenolic profile, toxicity, enzyme inhibition, in silico studies, and antioxidant properties of Cakile maritima Scop. (Brassicaceae) from southern Portugal. Plants, 9(2), 142, doi: 10.3390/plants9020142. Search in Google Scholar

Rouzaud G., Young S.A., Duncan A.J., 2004. Hydrolysis of glucosinolates to isothiocyanates after ingestion of raw or microwaved cabbage by human volunteers. Cancer Epidemiology, Biomarkers and Prevention, 13(1): 125-131, https://doi.org/10.1158/1055-9965.EPI-085-3. Search in Google Scholar

Schepici G., Bramanti P., Mazzon E., 2020. Efficacy of sulforaphane in neurodegenerative diseases. International Journal of Molecular Sciences, 21(22), 8637, doi: 10.3390/ijms2122 8637. Search in Google Scholar

Shiina A., Kanahara N., Sasaki T., Oda Y., Hashimoto T., Hasegawa T., Yoshida T., Iyo M., Hashimoto K., 2015. An open study of sulforaphane-rich broccoli sprout extract in patients with schizophrenia. Clinical Psychopharmacology and Neuroscience, 13(1), 62, doi: 10.9758/cpn.2015.13.1.62. Search in Google Scholar

Sønderby I.E., Geu-Flores F., Halkier B.A., 2010. Biosynthesis of glucosinolates – gene discovery and beyond. Trends in plant science, 15(5): 283-290, https://doi.org/10.1016/j.tplants.2010.02.005. Search in Google Scholar

Subedi L., Cho K., Park Y.U., Choi H.J., Kim S.Y., 2019. Sulforaphane-enriched broccoli sprouts pretreated by pulsed electric fields reduces neuroinflammation and ameliorates scopolamine-induced amnesia in mouse brain through its antioxidant ability via Nrf2-HO-1 activation. Oxidative Medicine and Cellular Longevity, 2019:3549274, doi: 10.1155/2019/3549274. Search in Google Scholar

Takaya Y., Kondo Y., Furukawa T., Niwa M., 2003. Antioxidant constituents of radish sprout (Kaiware-daikon), Raphanus sativus L. Journal of Agricultural and Food Chemistry, 51(27): 8061-8066, doi: 10.1021/jf0346206. Search in Google Scholar

Toro M.T., Ortiz J., Becerra J., Zapata N., Fierro P., Illanes M., López M.D., 2021. Strategies of elicitation to enhance bioactive compound content in edible plant sprouts: A bibliometric study. Plants, 10(12), 2759, doi: 10.3390/plants10122759. Search in Google Scholar

Uda Y., Kurata T., Arakawa N., 1986. Effects of pH and ferrous ion on the degradation of glucosinolates by myrosinase. Agricultural and Biological Chemistry, 50: 2735-2740, https://doi.org/10.1080/00021369.1986.10867832. Search in Google Scholar

Vale A.P., Santos J., Melia N., Peixoto V., Brito N.V., Oliveira B.M.P.P., 2015. Phytochemical composition and antimicrobial properties of four varieties of Brassica oleracea sprouts. Food Control, 55: 248-256, https://doi.org/10.1016/j.food-cont.2015.01.051. Search in Google Scholar

Vallejo F., Tomás-Barberán F.A., Ferreres F., 2004. Characterisation of flavonols in broccoli (Brassica oleracea L. var. italica) by liquid chromatography–uV diode-array detection-electrospray ionisation mass spectrometry. Journal of Chromatography A, 1054(1-2): 181-193, doi: 10.1016/j.chroma.2004.05.045. Search in Google Scholar

Xie C., Li W., Gao R., Yan L., Wang P., Gu Z., Yang R., 2022. Determination of glucosinolates in rapeseed meal and their degradation by myrosinase from rapeseed sprouts. Food Chemistry, 382, 132316, https://doi.org/10.1016/j.foodchem.2022.132316. Search in Google Scholar

Zhang N., Jing P., 2022. Anthocyanins in Brassicaceae: Composition, stability, bioavailability, and potential health benefits. Critical Reviews in Food Science and Nutrition, 62(8): 2205-2220, doi: 10.1080/10408398.2020.1852170. Search in Google Scholar

Zhou Y., Li P., Brantner A., Wang H., Shu X., Yang J., Si N., Han L., Zhao H., Bian B., 2017. Chemical profiling analysis of Maca using UHPLC-ESI-Orbitrap MS coupled with UHPLC-ESI-QqQ MS and the neuroprotective study on its active ingredients. Scientific Reports, 7(1): 1-14, doi: 10.1038/srep44660. Search in Google Scholar

Żuryń A., Litwiniec A., Safiejko-Mroczka B., Klimaszewska-Wiśniewska A., Gagat M., Krajewski A., Gackowska L., Grzanka D., 2016. The effect of sulforaphane on the cell cycle, apoptosis and expression of cyclin D1 and p21 in the A549 non-small cell lung cancer cell line. International Journal of Oncology, 48(6): 2521-2533, doi: 10.3892/ijo.2016.3444. Search in Google Scholar

Język:
Angielski
Częstotliwość wydawania:
1 razy w roku
Dziedziny czasopisma:
Nauki biologiczne, Nauka o roślinach, Ekologia