Otwarty dostęp

Protective effects of manganese(II) chloride on hyaluronan degradation by oxidative system ascorbate plus cupric chloride

Archibald FS, Fridovich I. (1982). The scavenging of superoxide radical by manganous complexes: in vitro. Arch Biochem Biophys 214: 452-463.Search in Google Scholar

Buettner GR, Jurkiewicz BA. (1993). Ascorbate free radical as a marker of oxidative stress: an EPR study. Free Radic Biol Med 14: 49-55.Search in Google Scholar

Buettner GB, Jurkiewicz BA. (1996). Catalytic metals, ascorbate and free radicals: combinations to avoid. Radiat Res 145: 532-541.Search in Google Scholar

Cavallini L, Valente M, Bindoli A. (1984). On the mechanism of inhibition of lipid peroxidation by manganese. Inorg Chim Acta 91: 117-120.Search in Google Scholar

Chang EC, Kosman DJ. (1989). Intracellular Mn (II)-associated superoxide scavenging activity protects Cu, Zn superoxide dismutase-deficient Saccharomyces cerevisiae against dioxygen stress. J Biol Chem 264: 12172-12178.Search in Google Scholar

Cheton PL-B, Archibald FS. (1988). Manganese complexex and the generation and scavenging of hydroxyl radicals. Free Radic Biol Med 5: 325-333.Search in Google Scholar

Coassin M, Ursini F, Bindoli A. (1992). Antioxidant effect of manganese. Arch Biochem Biophys 299: 330-333.Search in Google Scholar

Figueroa N, Nagy B, Charkrabarti B. (1977). Cu2+ -Hyaluronic acid complex: spectrophotometric detection. Biochem. Biophys Res Commun 74: 460-465.Search in Google Scholar

Fisher AEO, Naughton DP. (2004). Iron supplements: The quick fix with long-term consequences. Nutr J 3: 1-5.Search in Google Scholar

Fisher AEO, Naughton DP. (2005). Therapeutic chelators for the twenty first century: new treatments for iron and copper mediated inflammatory and neurological disorders. Curr Drug Deliv 2: 261-268.Search in Google Scholar

Fisher AEO, Naughton DP. (2003). Vitamin C contributes to inflammation via radical generating mechanisms: a cautionary note. Med Hypotheses 61: 657-660.Search in Google Scholar

Flemmig J, Arnhold J. (2007). Ferrous iron-induced strand breaks in the DNA plasmid pBR322 are not mediated by hydrogen peroxide. Eur Biophys J 36: 377-384.Search in Google Scholar

Gray B, Carmichael AJ. (1992). Kinetics of superoxide scavenging by dismutase enzymes and manganese mimics determined by electron spin resonance. Biochem J 281: 795-802.Search in Google Scholar

Halliwell B, Foyer CH. (1976). Ascorbic acid, metal ions and the superoxide radical. Biochem J 155: 697-700.Search in Google Scholar

Harris MJ, Herp A, Pigman W. (1976). Metal catalysis in the depolymerization of hyaluronic acid by autoxidants. J Am Chem Soc 94: 7570-7572.Search in Google Scholar

Hussain S, Ali SF. (1999). Manganese scavenges superoxide and hydroxyl radicals: an in vitro study in rats. Neurosci Lett 261: 21-24.Search in Google Scholar

Johnson KA, Hulse DA, Hart RC, Kochevar D, Chut Q. (2001). Effects of an orally administered mixture of chondroitin sulfate, glucosamine hydrochloride and manganese ascorbate on synovial fluid chondroitin sulfate 3B3 and 7D4 epitope in a canine cruciate ligament transection model of osteoarthritis. Osteoarthritis Cartilage 9: 14-21.Search in Google Scholar

Khan MMT, Martell AE. (1967). Metal ion and metal chelate catalyzed oxidation of ascorbic acid by molecular oxygen. 2. Cupric and ferric chelate catalyzed oxidation. J Am Chem Soc 89: 7104-7111.Search in Google Scholar

Khan MM, Martell AE. (1967). Metal ion and metal chelate catalyzed oxidation of ascorbic acid by molecular oxygen. I. Cupric and ferric ion catalyzed oxidation. J Am Chem Soc 89: 4176-4185.Search in Google Scholar

Kogan G, Šoltés L, Stern R, Mendichi R. (2007) Chapter 31: Hyaluronic acid: A Biopolymer with Versatile Physico-Chemical and Biological Properties, in Handbook of Polymer Research: Monomers, Oligomers, Polymers and Composites (Pethrick RA, Ballada A, Zaikov GE eds) pp. 393-439, New York, Nova Science Publishers.Search in Google Scholar

Kogan G, Šoltés L, Stern R, Schiller J, Mendichi R. (2008) Hyaluronic Acid: Its Function and Degradation in In Vivo Systems, in Studies in Natural Products Chemistry, Vol. 35 Bioactive Natural Products, Part D (Atta-ur-Rahman ed) pp. 789-882, Amsterdam, Elsevier.10.1016/S1572-5995(08)80035-XSearch in Google Scholar

Koppenol WH. (1994). Chemistry of Iron and Copper in Radical Reactions, in Free Radical Damage and Its Control (Rice-Evans CA, Burdon RH eds) pp. 3-24, Amsterdam, Elsevier Science B. V.Search in Google Scholar

Magnani A, Silvestri V, Barbucci R. (1999). Hyaluronic acid and sulphated hyaluronic acid in aqueous solution: effect of the sulphatation on the protonation and complex formation with Cu2+ and Zn2+ ions. Macromol Chem Phys. 200: 2003-2014.Search in Google Scholar

Matsumura G, Pigman W. (1965). Catalytic role of iron ion in the depolymerization of hyaluronic acid by ascorbic acid. Arch Biochem Biophys 110: 526-533.Search in Google Scholar

McCord JM. (1974). Free radicals and inflammation: protection of synovial fluid by superoxide dismutase. Science 185: 529-531.Search in Google Scholar

Mendoza G, Álvarez AI, Pulido MM, Molina AJ, Merino G, Real R, Fernandes P, Prieto JG. (2007). Antioxidant profile of hyaluronan: physico-chemical features and its role in pathologies. Carbohydr Res 342: 96-102.Search in Google Scholar

Nagy L, Yamashita S, Yamaguchi T, Sipos P, Wakita H, Nomura M. (1998). The local structures of Cu(II) and Zn(II) complexes of hyaluronate. J Inorg Biochem 72: 49-55.Search in Google Scholar

Naughton DP, Knappitt J, Fairburn K, Gaffnev K, Blake DR, Grootveld M. (1995). Detection and investigation of the molecular nature of low-molecular-mass copper ions in isolated rheumatoid knee-joint synovial fluid. FEBS Lett 361: 167-172.Search in Google Scholar

Niedermeier W, Dobson C, Laney RP. (1967a). Studies on the ascorbic acid-induced depolymerization of hyaluronic acid. Biochim Biophys Acta 141: 366-373.10.1016/0304-4165(67)90111-0Search in Google Scholar

Niedermeier W, Laney RP, Dobson C. (1967). The mechanism of action of ceruloplasmin in inhibiting ascorbic acid -induced depolymerization of hyaluronic acid. Biochim Biophys Acta 148: 400-405.Search in Google Scholar

Niedermeier W, Griggs JH. (1971). Trace metal composition of synovial fluid and blood serum of patients with rheumatoid arthritis. J Chron Dis 23: 527-536.Search in Google Scholar

Park JW, Chakrabarti B. (1978). Optical properties and viscosity of hyaluronic acid in mixed solvent: evidence of conformational transition biopolymers. Biopolymers 17: 1323-1333.Search in Google Scholar

Parsons BJ, Al-Assaf S Navaratnam S Phillips GO. (2002). Comparison of the Reactivity of Different Oxidative Species (ROS) towards Hyaluronan, in Hyaluronan: Chemical, Biochemical and Biological Aspects, Vol. 1 (Kennedy JF, Phillips GO, Williams PA, Hascall VC eds) pp. 141-150, Cambridge, MA, Woodhead Publishing Ltd.Search in Google Scholar

Pirc ET, Arčon I, Kodre A, Bukovec P. (2004). Metal-ion environment in solid Mn(II), Co(II) and Ni(II) hyaluronates. Carbohydr Res 339: 2549-2554.Search in Google Scholar

Roth JA. (2006). Homeostatic and toxic mechanisms regulating manganese uptake, retention, and elimination. Biol Res 39: 45-57.Search in Google Scholar

Rychlý J, Šoltés L, Stankovská M, Janigová I, Csomorová K, Sasinková V, Kogan G, Gemeiner P. (2006). Unexplored capabilities of chemiluminescence and thermoanalytical methods in characterization of intact and degraded hyaluronans. Polym Degrad Stab 91: 3174-3184.Search in Google Scholar

Qian SY, Buettner GR. (1999). Iron and dioxygen chemistry is an important route to initiation of biological free radical oxidations: an electron paramagnetic resonance spin trapping study. Free Radic Biol Med 26: 1447-1456.Search in Google Scholar

Sakurai K, Andoh M, Yamada M, KoderaY, Nishimura H, Hiroto M, Matsushima A, Aoyama M, Yamamoto H, Inadal Y. (1997). Anti-inflammatory activity of superoxide dismutase conjugated with sodium hyaluronate. Jpn J Pharmacol 74: 117-120.Search in Google Scholar

Samuni A, Aronovitch J, Godinger D, Chevion M, Czapski G. (1983). On the cytotoxicity of vitamin C and metal ions. A site-specific Fenton mechanism. Eur J Biochem 137: 119-124.Search in Google Scholar

Shukla GS, Chandra SV. (1981). Manganese toxicity: Lipid peroxidation in rat brain. Acta Pharmacol Toxicol 48: 95-100.Search in Google Scholar

Shukla N, Maher J, Masters J, Angelini GD, Jeremy JY. (2006). Does oxidative stress change ceruloplasmin from a protective to a vasculopathic risk factor? Atherosclerosis 187: 238-250.10.1016/j.atherosclerosis.2005.11.03516412446Search in Google Scholar

Singh RK, Kooreman KM, Babbs CF, Fessler JF, Salaris SC. (1992). Potential use of simple manganese salts as antioxidant drugs in horses. Am J Vet Res 53: 1822-1829.Search in Google Scholar

Stankovská M, Šoltés L, Vikartovská A, Gemeiner P, Kogan G, Bakoš D. (2005). Degradation of high-molecular-weight hyaluronan: rotational viscometry study. Biologia 60(Suppl. 17): 149-152.Search in Google Scholar

Stankovská M, Šoltés L, Vikartovská A, Mendichi R, Lath D, Molnárová M, Gemeiner P. (2004). Study of hyaluronan degradation by means of rotational viscometry: contribution of the material of viscometer. Chem Pap 58: 348-352.Search in Google Scholar

Swann DA. (1967). The degradation of hyaluronic acid by ascorbic acid. Biochem J 102: 42-44.Search in Google Scholar

Sziraki I, Mohanakumar KP, Rauhala P, Kim HG, Yeh KJ, Chiueh CC. (1998). Manganese: a transition metal protects nigrostriatal neurons from oxidative stress in the iron-induced animal model of Parkinsonism. Neuroscience 85: 1101-1111.Search in Google Scholar

Sziraki I, Rauhala P, Koh KK, Bergen PV, Chiueh CC. (1999). Implications for atypical antioxidative properties of manganese in iron-induced brain lipid peroxidation and copper-dependent low density lipoprotein conjugation. Neurotoxicology 20: 455-466.Search in Google Scholar

Šoltés L, Kogan G, Stankovská M, Mendichi R, Rychlý J, Schiller J, Gemeiner P. (2007). Degradation of high-molar-mass hyaluronan and characterization of fragments. Biomacromolecules 8: 2697-2705.Search in Google Scholar

Šoltés L, Kogan G. (2009). Catabolism of hyaluronan: involvement of transition metals. Interdisciplinary Toxicology 2: 229-238.Search in Google Scholar

Šoltés L, Stankovská M, Brezová V, Schiller J, Arnhold J, Kogan G, Gemeiner P. (2006). Hyaluronan degradation by copper(II) chloride and ascorbate: rotational viscometric, EPR spin-trapping, and MALDI-TOF mass spectrometric investigations. Carbohydr Res 341: 2826-2834.Search in Google Scholar

Šoltés L, Stankovská M, Kogan G, Gemeiner P, Stern R. (2005). Contribution of oxidative-reductive reactions to high-molecular-weight hyaluronan catabolism. Chem Biodivers 2: 1242-1245.Search in Google Scholar

Šoltés L, Valachová K, Mendichi R, Kogan G, Arnhold J, Gemeiner P. (2007). Solution properties of high-molar-mass hyaluronans: the biopolymer degradation by ascorbate. Carbohydr Res 342: 1071-1077.Search in Google Scholar

Tampo Y, Yonaha M. (1992). Antioxidant mechanism of Mn(II) in phospholipid peroxidation. Free Radic Biol Med 13: 115-20.Search in Google Scholar

Valko M, Morris H, Cronin MTD. (2005). Metals, toxicity and oxidative stress. Curr Med Chem 12: 1161-1208.Search in Google Scholar

Varani J, Ginsburg I, Gibbs DF, Mukhopadhyay PS, Sulavik C, Johnson KJ, Weinberg JM, Ryan US, Ward PA. (1991). Hydrogen peroxide-induced cell and tissue injury: protective effects of Mn2+. Inflammation 15: 291-301.Search in Google Scholar

Volpi N. (2006). Therapeutic applications of glycosaminoglycans. Curr Med Chem 13: 1799-810.Search in Google Scholar

Weigel PH, DeAngelis PL. (2007). Hyaluronan synthases: a decade-plus of novel glycosyltransferases. J Biol Chem 282: 36777-36781.Search in Google Scholar

Weissberger A, LuValle JE, Jr. Thomas DS. (1943). Oxidation processes. XVI. The autoxidation of ascorbic acid. J Am Chem Soc 65: 1934-1939.Search in Google Scholar

Wong SF, Halliwell B, Richmond R, Skowroneck WR. (1981). The role of suproxide and hydroxyl radicals in the degradation of hyaluronic acid induced by metal ions and by ascorbic acid. J Inorg Biochem 14: 127-134.Search in Google Scholar

Worley CG, Bombick D, Allen JW, Suber RL, Aschner M. (2002). Effects of manganese on oxidative stress in CATH.a cells. Neurotoxicology 23: 159-164.Search in Google Scholar

eISSN:
1337-9569
ISSN:
1337-6853
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Medicine, Clinical Medicine, Pharmacology, Toxicology