Otwarty dostęp

Porous Materials Used as Inserted Bone Implants


Zacytuj

Rosiek G., Misiewicz C., Bieniek J.: Behaviour of a corundum porous material in a living organism - Part I - Glass and Ceramics (Acta Ceramica), 2, 1984, 41-44.Search in Google Scholar

Ryan G., Pandit A., Apatsidis D.P.: Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials 27 (2006), 2651-2670.Search in Google Scholar

Gradzka-Dahlke M.: The effect of structure on mechanical properties of porous sinters made of implant steel 316L. Engineering of Biomaterials, X, 65-66, 2007, 17-19.Search in Google Scholar

Takemoto M., Fujibayashi S., Neo M., Suzuki J., Kokubo T., Nakamura T.: Mechanical properties and osteoconductivity of porous bioactive titanium. Biomaterials 26, 6014 - 6023 (2005).10.1016/j.biomaterials.2005.03.019Search in Google Scholar

An Y.B., Lee: Synthesis of porous titanium implants by environmental-electro-discharge-sintering process. Materials Chemistry and Physics 95, 242-247 (2006).10.1016/j.matchemphys.2005.06.011Search in Google Scholar

Rajzer I., Blazewicz M., Menaszek E., Czarny A., Zaczynska E.: The effect of the carbon fibres diameter on cell response. Engineering of Biomaterials, X, 67-68, 2007, 52-56.Search in Google Scholar

Sindut R., Laczka M., Cholewa - Kowalska K., Najman J., Szymonska J.: Porous bioactive sinters. Engineering of Biomaterials, VIII, 45, 2005, 16-23Search in Google Scholar

Ma P.X.: Materials today. 2004, 7 (5), 30-40.Search in Google Scholar

Seal B.L., Otero T.C., Panitch A.: Materials Science and Engineering, 2001, 34, 147-230.10.1016/S0927-796X(01)00035-3Search in Google Scholar

Pamula E., Buczynska J., Menaszek E., Bacakova L., Dobrzyński P., Bero M.: Resorbable porous scaffolds for tissue engineering. Chemik 2/2005, 57-62.Search in Google Scholar

Yang S., Leong K.F., Du Z., Chua C.K.: Tissue engineering. 2001, 7, 679-68910.1089/107632701753337645Search in Google Scholar

Frosh K.H., Bravencik F., Lohmann C.H., Viereck V., Siggelkow H., Breme J., Dresing K., Strurmer K.M.: Cell Tissue Organs 2002, 170, 214-227.10.1159/000047925Search in Google Scholar

Pamula E., Blazewicz M., Czajkowska B., Dobrzyński P., Bero M., Kasperczyk J.: Elaboration and characterisation of biodegradable scaffolds from poly (L-lactide-co-glycolide) synthesized with low-toxic zirconium acetylacetonate. Annals of transplantation, vol.9, no.1A (suppl.) 2004, 64-67.Search in Google Scholar

Pamula E., Polok A., Menaszek E.: Degradable scaffold materials for cartilage regeneration. Engineering of Biomaterials, X, 69-72, 2007, 3-5.Search in Google Scholar

Menaszek E., Pamula E.: The effect of pore size of resorbable PGLA foams on the tissue response. In vivo study. Engineering of Biomaterials, VIII, 47-53, (2005), 221-223.Search in Google Scholar

Podrezov Yu., Firstov S., Szafran M, Kurzydlowski K.J.: Non-elastic behaviors of high-porosity ceramics and ceramic-polymer composites for medical applications. Annals of transplantation, vol.9, no.1A (suppl.) 2004, 15-19.Search in Google Scholar

Paluch D., Pielka S., Solski L., Karas J., Jaegermann Z., Michalowski S.: The study of the cytotoxycity effects of the porous corundum implants containing antibiotics. Engineering of Biomaterials, VII, 37, 2004, 38-41.Search in Google Scholar

Niedzielski K., Sindut R., Cholewa-Kowalska K., Laczka M., Kokoszka J.: New generation bioactive glass-ceramics as a substitute of bone - in vivo study. Engineering of Biomaterials, X, 67-68, (2007), 48-51.Search in Google Scholar

Lewandowski R., Grzybowski J., Jaegermann Z., Polesinski Z.: The kinetic of antibiotic setting free from ceramic implants. Polymers in Medicine, 33, 3, 2003, 3-11.Search in Google Scholar

Szafran M., Bobryk E., Bereza M., Parzuchowski P.: Ceramic-polymer composites based on porous hydroxyapatite and lactide-carbonate macromonomers. Engineering of Biomaterials, VII, 38-42, (2004), 150-154.Search in Google Scholar

Slosarzcyk A., Paszkiewicz Z., Pitak A.: Rheological properties of hydroxyapatite slurries designer for preparation of highly porous bone implants using polyurethane foams as matrices. Engineering of Biomaterials, X, 61, (2007), 24-30.Search in Google Scholar

Knowles J.C., Callut S., Georgiou G.: Characterisation of the rheological properties and zeta potential of a range of hydroxyapatite powders. Biomaterials 21, (2000), 1387-1392.10.1016/S0142-9612(00)00032-6Search in Google Scholar

Tadic D., Beckmann F., Schwarz K., Epple M.: A novel method to produce hydroxyapatite objects with interconnecting porosity that avoids sintering. Biomaterials 25, 2004.10.1016/j.biomaterials.2003.10.007Search in Google Scholar

Chlopek J.: Composites in medicine. Composites, 1(1), (2001), 50-54.Search in Google Scholar

Ramakrishna S., Mayer J., Wintermantel E., Kam W. Leong: Biomedical applications of polymer-composite materials: a review. Composites Sciences and Technology, 61, (2001), 1189-1224.10.1016/S0266-3538(00)00241-4Search in Google Scholar

Szafran M., Rokicki G., Lipiec W., Konopna K., Kurzydlowski K.: The porous ceramics with metals and polymers. Composites, 2 (25), (2002), 313-317.Search in Google Scholar

Yasuda H.Y., Mahara S., Umakoshi Y., Imazato S., Ebisu S.: Microstructure and mechanical property of synthesized hydroxyapatite prepared by colloidal process. Biomaterials 21, (2000), 2045-2049.10.1016/S0142-9612(00)00090-9Search in Google Scholar

Olah L., Borbas L.: Properties of calcium carbonate-containing composite scaffolds. Acta of Bioengineering and Biomechanics, vol.10, 1, 2008, 61-66Search in Google Scholar

Hench L.L.: Bioceramics: from concept to clinic. Am. Ceram. Soc. Bull., vol. 72, nr 4, 1993, 93-98.Search in Google Scholar

Cao W., Hench L.L.: Bioactive materials. Ceramics International, 22, 1996, 493-507.10.1016/0272-8842(95)00126-3Search in Google Scholar

de Groot K.: Hydroxylapatite as coating for implants. Interceram, 4, 1987, 38-41.Search in Google Scholar

Ratner B.D.: Biomaterials Science. An introduction to materials in medicine. Ed. Ratner B.D., Hoffman A.S., Schoen F.J., Lemons J.E. Academic Press, 1996.10.1016/B978-012582460-6/50002-5Search in Google Scholar

Biocybernetics and biomedical engineering 2000. Nalecz M. [red.], Biomaterials, PAN, EXIT, Warsaw, 2003.Search in Google Scholar

Bach Fr.W., Bormann D., Kucharski R., Wilk P.: Production and properties of foamed magnesium. Cellular Metals and Polymers. Eds. Springer, Zurich 2005, 77-80.Search in Google Scholar

Switzer E.: Resorbierbares metallisches osteosynthesematerial-untersuchungen zum resorptionsverhalten im meerschweinchenmodell. Vet. Med. Diss., Hanover, 2005.Search in Google Scholar

Bach Fr.W., Kucharski R., Bormann D.: Magnesium compound structures for the treatment of bone defects. Engineering of Biomaterials, IX, 56-57, (2006), 58-61.Search in Google Scholar

Bach Fr.W., Kucharski R., Bormann D., Besdo D., Besdo S., Hackenbroigh Ch., Thorey Fr., Meyer-Lindenberg A.: Design of resorption properties of the metal bane implants-application in vivo. Engineering of Biomaterials, IX, 56-57, (2006), 54-58.Search in Google Scholar

Gryn K., Chlopek J.: Hydroxyapatite scaffolds by "Robocasting" for medical applications-preliminary tests. Engineering of Biomaterials, XI, 76, 2008, 13-16.Search in Google Scholar

Cesarano J., Clavert P.: Freeforming objects with low binder slurry. US Patent #6027326, 2000.Search in Google Scholar

Saiz E., Gremillard L., Menendez G., Miranda P., Gryn K., Tomsia A.P.: Preparation of porous hydroxyapatite scaffolds. Materials Science and Engineering, C, 27, 2007, 546-550.10.1016/j.msec.2006.05.038Search in Google Scholar

Miranda P., Saiz E., Gryn K., Tomsia A.P.: Sintering and robocasting of β-tricalcium phosphate scaffolds for orthopaedic applications. Acta Biomaterialia, 2, 2006, 457-466.10.1016/j.actbio.2006.02.004Search in Google Scholar

Li J.P., Habibovic P., Van del Doel M., Wilson C.E., de Wijn J.R., van Blitterswijk C.A., de Groot K.: Bone ingrowth in porous titanium implants produced by 3D fiber deposition. Biomaterials 28 (2007), 2810-2820.Search in Google Scholar

Fang Z., Starly B., Sun W.: Computer-aided characterization for effective mechanical properties of porous tissue scaffolds. Computer-Aided Design 37 (2005), 65-72.Search in Google Scholar

Chua Chee K., Leong Kah F.: Rapid Prototyping; Principles & Applications in Manufacturing. Willey & Sons 1997.Search in Google Scholar

Lewis J.A.: Direct-write assembly for ceramics from colloidal inks. Solid State & Materials Science 6, (2002), 245-250.10.1016/S1359-0286(02)00031-1Search in Google Scholar

Stuecker J.N., Cesarano J., Hirschfeld D.A.: Control of the viscous behaviour of highly concentrated mullite suspensions for robocasting. Journal of Materials Processing Technology 142, (2003), 318-325.10.1016/S0924-0136(03)00586-7Search in Google Scholar

Kalita S.J., Bose S., Hosick H.L., Bandyopadhyay A.: Development of controlled polymer-ceramic composite scaffolds via fused deposition modeling. Materials Science and Engineering, C 23, (2003), 611-620.10.1016/S0928-4931(03)00052-3Search in Google Scholar

Armistead R.A., Stanley J.H.: Computer tomography: A versatile technology. Advanced Materials & Processes 2/97, 33-36.Search in Google Scholar

Uklejewski R., Winiecki M., Rogala P.: On the structural-adaptive compatibility of bone with porous coated implants on the base of traditional one-phase and the modern two-phase poroelastic biomechanical model of bone tissue. Engineering of Biomaterials, IX, 54-55, (2006), 1-13.Search in Google Scholar

eISSN:
2083-4799
ISSN:
1730-2439
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Materials Sciences, Functional and Smart Materials