Otwarty dostęp

Preparation of carbon nanotubes using cvd CVD method

   | 27 wrz 2010

Zacytuj

Balogh, Z., Halasi, G., Korbély, & Hernadi, K. (2008). CVD-syntesis of multiwall carbon nanotubes over potassium-doped supported catalysts. Appl. Catal. A: General 344, 191-197. doi:10.1016/j.apcata.2008.04.019.10.1016/j.apcata.2008.04.019Search in Google Scholar

Singh, B. K., Ryu, H., Rajeev, C. C., Nguyen, D. H., Park, S. J., Kim, S. & Lee, J. R. (2006). Growth of multiwalled carbon nanotubes from acetylene over in situ formed Co nanoparticles on MgO support. Solid State Commun. 139, 102-107. doi:10.1016/j.ssc.2006.05.021.10.1016/j.ssc.2006.05.021Search in Google Scholar

Reddy, N. K., Meunier, J-L. & Coulombe, S. (2006). Growth of carbon nanotubes directly on a nickel surface by thermal CVD. Mater. Sci. 60, 3761-3765. doi:10.1016/j.matlet.2006.03.109.10.1016/j.matlet.2006.03.109Search in Google Scholar

Park, C. & Keane, M. A. (2004). Catalyst support effect in the growth of structured carbon from the decomposition of ethylene over nickel. J. Catal. 221, 386-399. doi:10.1016/j.jcat.2003.08.014.10.1016/j.jcat.2003.08.014Search in Google Scholar

Chen, Ch.M., Dai, Y. M., Huang, J. G. & Jehng, J. M. (2006). Intermetallic catalyst for carbon nanotubes (CNTs) growth by thermal chemical vapor deposition method. Carbon 44, 1808-1820. doi:10.1016/j.carbon.2005.12.043.10.1016/j.carbon.2005.12.043Search in Google Scholar

Tobias, G., Shao, L. D., Salzmann, C. G., Huh, Y. & Green, M. L. H. (2006). Purification and opening of carbon nanotubes using steam. J. Phys. Chem. B 110, 22318-22322. doi: 10.1021/jp0631883.10.1021/jp0631883Search in Google Scholar

Wang, Y. H., Shan, H. W., Hauge, R. H., Pasquali, M. & Smalley, R. A. (2007). A highly selective, one-pot purification method for single-walled carbon nanotubes. J. Phys. Chem. B 111, 1249-1252. doi: 10.1021/jp068229+.10.1021/jp068229+Search in Google Scholar

Hernadi, K., Siska, A., Thien-Nga, L., Forro, L. & Kiricsi, I. (2001). Reactivity of different kinds of carbon during oxidative purification of catalytically prepared carbon nanotubes. Solid State Ionics 141&142, 203-209. doi:10.1016/S0167-2738(01)00789-5.10.1016/S0167-2738(01)00789-5Search in Google Scholar

Pełech, I. & Narkiewicz, U. (2009). Studies of hydrogen interaction with carbon deposit containing carbon nanotubes. J. Non-Cryst. Solids 355, 1370-1375. doi: 10.1016/j.jnoncrysol.2009.05.025.10.1016/j.jnoncrysol.2009.05.025Search in Google Scholar

Fonseca, A., Hernadi, K., Piedigrosso, P., Colomer, J. F., Mukhopadhyay, K., Doome, R., Lazarescu, S., Brio, L. P., Lambin, Ph., Thiry, P. A., Bernaerts, D. & Nagy, J. B. (1998). Synthesis of single- and multi-wall nanotubes over supported. Appl. Phys. A 67, 11-22. doi: 10.1007/s003390050732.10.1007/s003390050732Search in Google Scholar

Narkiewicz, U., Pełech, I., Rosłaniec, Z., Kwiatkowska, M. & Arabczyk, W. (2007). Preparation of nanocrystalline iron-carbon materiale as fillers for polymers. Nanotechnology 18, 405601. doi:10.1088/0957-4484/18/40/405601.10.1088/0957-4484/18/40/405601Search in Google Scholar

Rocco, A. M., Cristiane, C. A., Macedo, M. I. F., Maestro, L. F. & Herbst, M. H. (2008). Purification of cataltically produced carbon nanotubes for use as support for fuel cell cathode Pt catalyst. J. Mater. Sci. 43, 557-567. doi: 10.1007/s10853-007-1779-3.10.1007/s10853-007-1779-3Search in Google Scholar

Raymundo-Pinero, E., Cazorla-Amorós, D., Salina-Martinez de Lecea, C. & Linares-Solano, A. (2000). Factors controling the SO2 removal by porous carbons: relevance of the SO2 oxidation step. Carbon 38, 335-344. doi: 10.1016/S0008-6223(99)00109-8.10.1016/S0008-6223(99)00109-8Search in Google Scholar

Raymundo-Pinero, E., Cazorla-Amorós, D. & Linares-Solano, A. (2001). Temperature programmed desorption study on the mechanism of SO2 oxidation by activated carbon and activated carbon fibres. Carbon 39, 231-242. doi:10.1016/S0008-6223(00)00119-6.10.1016/S0008-6223(00)00119-6Search in Google Scholar

Khavrus, V. O., Lemesh, N. V., Gordijchuk, S. V., Tripolsky, A. I., Iwashchenko, T. S., Biliy, M. M. & Strizhak, P. E. (2008). Chemical catalytic vapor deposition (CCVD) synthesis of carbon annotubes by decomposition of ethylene on metal (Ni, Co, Fe) nanoparticles. React. Kinet. Catal. Lett. 93, 295-303. doi: 10.1007/s11144-008-5225-6.10.1007/s11144-008-5225-6Search in Google Scholar

Donato, M. G., Messina, G., Milone, C., Pristone, A. & Santangelo, S. (2008). Experiments on C nanotubes synthesis by Fe-assisted ethane decomposition. Diam. Relat. Mater. 17, 318-324. doi: 10.1016/j.diamond.2007.12.043.10.1016/j.diamond.2007.12.043Search in Google Scholar

Nagaraju, N., Fonseca, A., Konya, Z. & Nagy, J. B. (2002). Alumina and silica supported metal catalysts for the production of carbon nanotubes. J. Mol. Catal. A-Chem. 181, 57-62. doi: S1381-1169(01)00375-2.10.1016/S1381-1169(01)00375-2Search in Google Scholar

Escobar, M., Moreno, M. S., Candal, R. J. Marchi, M. C., Caso, A., Polosecki, P. I. Rubiolo, G. H. & Goyanes S. (2007). Synthesis of carbon nanotubes by CVD: Effect of acetylene pressure on nanotubes characteristics. Appl. Surf. Sci. 254, 251-256. doi: 10.1016/j.apsusc.2007.07.044.10.1016/j.apsusc.2007.07.044Search in Google Scholar

Tripol'skii, A. I., Lemesh, N. V., Khavrus', V. A. & Strizhak, P. E. (2008). Morphology of carbon nanotubes, obtained by decomposition of ethylene on nickel nanoparticles at various rates of flow and concentration of C2H2. Theor. Exp. Chem. 44, 240-244. doi: 0040-5760/08/4404-0240.10.1007/s11237-008-9034-9Search in Google Scholar

Venegoni, D., Serp, P., Feurer, R., Kihn, Y., Vahlas, C. & Kalck, P. (2002). Parametric study for the growth of carbon nanotubes by catalytic chemical vapor deposition in a fluidized bed reactor. Carbon 40, 1799-1807. doi: S0008-6223(02)00057-X.10.1016/S0008-6223(02)00057-XSearch in Google Scholar

Ermakova, M. A., Ermakov, D. Y, Chuvilin, A. L. & Kushinov, G. G. (2001). Decomposition of methane over iron catalyst at the range of moderate temperatures: the influence of structure of the catalytic systems and the reaction conditions on the yield of carbon and morphology of carbon filaments. J. Catal. 201, 183-197. doi:10.1006/jcat.2001.3243.10.1006/jcat.2001.3243Search in Google Scholar

eISSN:
1899-4741
ISSN:
1509-8117
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering