Zacytuj

1. S. Hasani-Ranjbar, B. Larijani and M. Abdollahi, A systematic review of the potential herbal sources of future drugs effective in oxidant-related diseases, Inflamm. Allergy Drug Targets 8 (2009) 2-10.10.2174/187152809787582561Search in Google Scholar

2. C. H. Oliveira, M. E. A. Moraes, M. O. Moraes, F. A. F. Bezerra, E. Abib and G. De Nucci, Clinical toxicology study of an herbal medicinal extract of Paullinia cupana, Trichilia catigua, Ptychopetalum olacoides and Zingiber officinalis (Catuama) in healthy volunteers, Phytother. Res. 19 (2005) 54-57; DOI: 10.1002/ptr.1484.10.1002/ptr.1484Search in Google Scholar

3. M. G. Pizzolatti, A. F. Venson, A. S. Júnior, E. F. A. Smânia and R. Braz-Filho, Two epimeric flavalignans from Trichilia catigua (Meliaceae) with antimicrobial activity, Z. Naturforsch. C 57 (2002) 483-488.10.1515/znc-2002-5-614Search in Google Scholar

4. W. Tang, H. Hioki, K. Harada, M. Kubo and Y. Fukuyama, Antioxidant phenylpropanoid-substituted epicatechins from Trichilia catigua, J. Nat. Prod. 70 (2007) 2010-2013; DOI: 10.1021/np0703895.10.1021/np0703895Search in Google Scholar

5. S. Venkatesh, M. Deecaraman, R. Kumar, M. B. Shamsi and R. Dada, Role of reactive oxygen species in the pathogenesis of mitochondrial DNA (mtDNA) mutation in male infertility, Indian J. Med. Res. 129 (2009) 127-137.Search in Google Scholar

6. R. L. Puntel, D. H. Roos, D. Grotto, S. C. Garcia, C. W. Nogueira and J. B. Rocha, Antioxidant properties of Krebs cycle intermediates against malonate prooxidant activity in vitro: a comparative study using the colorimetric method and HPLC analysis to determine malondialdehyde in rat brain homogenates, Life Sci. 81 (2007) 51-62; DOI: 10.1016/j.lfs.2007.04.023.10.1016/j.lfs.2007.04.023Search in Google Scholar

7. A. H. Laghari, S. Memon, A. Nelofar, K. M. Khan and A. Yasmin, Determination of free phenolic acids and antioxidant activity of methanolic extracts obtained from fruits and leaves of Chenopodium album, Food. Chem. 126 (2011) 1850-1855; DOI: 10.1016/j.foodchem.2010.11.165.10.1016/j.foodchem.2010.11.165Search in Google Scholar

8. R. L. Puntel, D. H. Roos, V. Folmer, C. W. Nogueira, A. Galina, M. Aschner and J. B. T. Rocha, Mitochondrial dysfunction induced by different organochalchogens is mediated by thiol oxidation and is not dependent on the classical mitochondrial permeability transition pore opening, Toxicol. Sci. 117 (2010) 133-143; DOI: 10.1093/toxsci/kfq185.10.1093/toxsci/kfq185Search in Google Scholar

9. O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall, Protein measurement with the Folin phenol reagent, J. Biol. Chem. 193 (1951) 265-275.10.1016/S0021-9258(19)52451-6Search in Google Scholar

10. Y. S. Velioglu, G. Mazza, L. Gao and B. D. Oomah, Antioxidant activity and total phenolics in selected fruits, vegetables and grain products, J. Agric. Food Chem. 46 (1998) 4113-4117; DOI: 10.1021/jf9801973.10.1021/jf9801973Search in Google Scholar

11. C. Nencini, A. Menchiari, G. G. Franchi and L. Micheli, In vitro antioxidant activity of some Italian Allium species, Plant Food Hum. Nutr. 66 (2011) 11-16; DOI: 10.1007/s11130-010-0204-2.10.1007/s11130-010-0204-221290188Search in Google Scholar

12. A. A. Boligon, P. R. Pereira, A. C. Feltrin, M. M. Machado, V. Janoyik, J. B. T. Rocha and M. L. Athayde, Antioxidant activities of flavonol derivatives from the leaves and stem bark of Scutia buxifolia Reiss, Biores. Technol. 100 (2009) 6592-6598; DOI: 10.1016/j.biortech.2009.03.091.10.1016/j.biortech.2009.03.09119666219Search in Google Scholar

13. H. Kiliçgün and D. Altiner, Correlation between antioxidant effect mechanisms and polyphenol content of Rosa canina, Pharmacogn. Mag. 23 (2010) 238-241; DOI: 10.4103/0973-1296.66943.10.4103/0973-1296.66943295038920931086Search in Google Scholar

14. P. A. Omololu, J. B. T. Rocha and I. J. Kade, Attachment of rhamnosyl glucoside on quercetin confers potent iron-chelating ability on its antioxidant properties, Exp. Toxicol. Pathol. 63 (2011) 249-255; DOI: 10.1016/j.etp.2010.01.002.10.1016/j.etp.2010.01.00220122821Search in Google Scholar

15. M. J. Hansson, R. Månsson, S. Morota, H. Uchino, T. Kallur, T. Sumi, N. Ishii, M. Shimazu, M. F. Keep, A. Jegorov and E. Elmér, Calcium-induced generation of reactive oxygen species in brain mitochondria is mediated by permeability transition, Free Radical Biol. Med. 45 (2008) 284-294; DOI: 10.1016/j.freeradbiomed.2008.04.021.10.1016/j.freeradbiomed.2008.04.02118466779Search in Google Scholar

16. C. Wagner, A. P. Vargas, D. H. Roos, A. F. Morel, M. Farina, C. W. Nogueira, M. Aschner and J. B. Rocha, Comparative study of quercetin and its two glycoside derivatives quercitrin and rutin against methylmercury (MeHg)-induced ROS production in rat brain slices, Arch. Toxicol. 84 (2010) 89-97; DOI: 10.1007/s00204-009-0482-3.10.1007/s00204-009-0482-319902180Search in Google Scholar

17. F. Sedlic, A. Sepac, D. Pravdic, A. K. S. Camara, M. Bienengreber, A. K. Brzezinska, T. Wakatsuki and Z. J. Bosnjak, Mitochondrial depolarization underlies delay in permeability transition by preconditioning with isoflurane: roles of ROS and Ca2+, Am. J. Physiol. Cell Physiol. 299 (2010) C506-C515; DOI: 10.1152/ajpcell.00006.2010.10.1152/ajpcell.00006.2010292864020519447Search in Google Scholar

eISSN:
1846-9558
ISSN:
1330-0075
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Pharmacy, other