1. bookTom 42 (2011): Zeszyt 2-3 (September 2011)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1899-8526
ISSN
1899-8291
Pierwsze wydanie
05 Feb 2007
Częstotliwość wydawania
1 raz w roku
Języki
Angielski
Otwarty dostęp

Pyromorphite formation from montmorillonite adsorbed lead

Data publikacji: 04 Jul 2012
Tom & Zeszyt: Tom 42 (2011) - Zeszyt 2-3 (September 2011)
Zakres stron: 75 - 91
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1899-8526
ISSN
1899-8291
Pierwsze wydanie
05 Feb 2007
Częstotliwość wydawania
1 raz w roku
Języki
Angielski

Basta, N. T., & McGowen, S. L. (2004). Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil. Environmental Pollution, 127(1), 73-82. DOI: 10.1016/S0269-7491(03)00250-1.10.1016/S0269-7491(03)00250-1Search in Google Scholar

Chappell, M. A., & Scheckel, K. G. (2007). Pyromorphite formation and stability after quick lime neutralisation in the presence of soil and clay sorbents. Environmental Chemistry, 4(2), 109-113. DOI: 10.1071/EN06081.10.1071/EN06081Search in Google Scholar

Cotter-Howells, J. (1996). Lead phosphate formation in soils. Environmental Pollution, 93(1), 9-16. DOI: 10.1016/0269-7491(96)00020-6.10.1016/0269-7491(96)00020-6Search in Google Scholar

Debela, F., Arocena, J. M., Thring, R. W., & Whitcombe, T. (2010). Organic acid-induced release of lead from pyromorhite and its relevance to reclamation of Pb-contaminated soils. Chemospere, 80(4), 450-456. DOI: 10.1016/j.chemosphere.2010.04.025.10.1016/j.chemosphere.2010.04.025Search in Google Scholar

Flis, J., Borkiewicz, O., Bajda, T., Manecki, M., & Klasa, J. (2010). Synchrotron-based X-ray diffraction of the lead apatite series Pb10(PO4)6Cl2-Pb10(AsO4)6Cl2. Journal of Synchrotron Radiation, 17(2), 207-214. DOI: 10.1107/S0909049509048705.10.1107/S0909049509048705Search in Google Scholar

Flis, J., Manecki, M., & Bajda, T. (2011). Solubility of pyromorphite Pb5(PO4)3Cl - mimetite Pb5(AsO4)3Cl solid solution series. Geochimica et Cosmochimica Acta, (in press). DOI: 10.1016/j.gca.2011.01.021.10.1016/j.gca.2011.01.021Search in Google Scholar

Hettiarachchi, G. M., Pierzynski, G. M., & Ransom, M. D. (2000). In situ stabilization of soil lead using phosphorous and manganese oxide. Environmental Science and Technology, 34(21), 4614-4619. DOI: 10.1021/es001228p.10.1021/es001228pSearch in Google Scholar

Hettiarachchi, G. M., Pierzynski, G. M., & Ransom, M. D. (2001). In situ stabilization of soil lead using phosphorous. Journal of Environmental Quality, 30(4), 1214-1221. DOI: 10.2134/jeq2001.3041214x.10.2134/jeq2001.3041214xSearch in Google Scholar

Lenoble, V., Deluchat, V., Serpaud, B., & Bollinger, J. C. (2003). Arsenite oxidation and arsenate determination by the molybdene blue method. Talanta, 61(3), 267-276. DOI: 10.1016/S0039-9140(03)00274-1.10.1016/S0039-9140(03)00274-1Search in Google Scholar

Ma, Q. Y., Traina, S. J., & Logan, T. J. (1993). In situ lead immobilization by apatie. Environmental Science and Technology, 27(9), 1803-1810. DOI: 10.1021/es00046a007.10.1021/es00046a007Search in Google Scholar

Ma, Q. Y., Triana, S. J., Logan, T. J., & Ryan, J. A. (1994). Effects of aqueous Al, Cd, Cu, Fe(II), Ni, and Zn on Pb immobilization by hydroxyapatite. Environmental Science and Technology, 28(7), 1219-1228. DOI: 10.1021/es00056a007.10.1021/es00056a007Search in Google Scholar

Ma, L. Q., & Rao, G. N. (1997). Effects of phosphate rock sequential chemical extraction of lead in contaminated soils. Journal of Environmental Quality, 26(3), 788-794. DOI: 10.2134/jeq1997.00472425002600030028x.10.2134/jeq1997.00472425002600030028xSearch in Google Scholar

Manecki, M., Bogucka, A., Bajda, T., & Borkiewicz, O. (2006). Decrease of Pb bioavailability in soils by addition of phosphate ions. Environmental Chemistry Letters, 3(4), 178-181. DOI: 10.1007/s10311-005-0030-1.10.1007/s10311-005-0030-1Search in Google Scholar

Manecki, M., & Maurice, P. A. (2008). Siderophore promoted dissolution of pyromorphite. Soil Science, 173(12), 821-830. DOI: 10.1097/SS.0b013e31818e8968.10.1097/SS.0b013e31818e8968Search in Google Scholar

Manecki, M., Maurice, P. A., & Traina, S. J. (2000). Kinetics of aqueous Pb reaction with apatites. Soil Science, 165(12), 920-933.10.1097/00010694-200012000-00002Search in Google Scholar

Melamed, R., Cao, X., Chen, M., & Ma, L. Q. (2003). Field assessment of lead immobilization in a contaminated soil after phosphate application. Science of the Total Environment, 305(1-3), 117-127. DOI: 10.1016/S0048-9697(02)00469-2.10.1016/S0048-9697(02)00469-2Search in Google Scholar

Miretzky, P., & Fernandez-Cirelli, A. (2008). Phosphates for Pb immobilization in soils: a review. Environmental Chemistry Letters, 6(3), 121-133. DOI: 10.1007/s10311-007-0133-y.10.1007/s10311-007-0133-ySearch in Google Scholar

Moore, D. M., & Reynolds Jr, R. C. (1997). X-Ray Diffraction and the Identification and Analysis of Clay Minerals. New York: Oxford University Press.Search in Google Scholar

Mozgawa, W., Król, M., & Bajda, T. (2009). Application of IR spectra in the studies of heavy metal cations immobilization on natural sorbents. Journal of Molecular Structure, 924-926, 427-433. DOI: 10.1016/j.molstruc.2008.12.028.10.1016/j.molstruc.2008.12.028Search in Google Scholar

Raicevic, S., Kaludjerovic-Radoicic, T., & Zouboulis, A. I. (2005). In situ stabilization of toxic metals in polluted soils using phosphates: theoretical prediction and experimental verification. Journal of Hazardous Materials, 117(1), 41-53. DOI: 10.1016/j.jhazmat.2004.07.024.10.1016/j.jhazmat.2004.07.02415621352Search in Google Scholar

Ranatunga, T. D., Taylor, R. W., Schulthess, C. P., Ranatunga, D. R. A., Bleam, W. F., & Zenwo, Z. N. (2008). Lead sorption on phosphatepretreated kaolinite: Modeling, aqueous speciation, and thermodynamics. Soil Science, 173(5), 321-331. DOI: 10.1097/SS.0b013e31816d1e25.10.1097/SS.0b013e31816d1e25Search in Google Scholar

Ruby, M. V., Davis, A., & Nicholson, A. (1994). In-situ formation of lead phosphates in soils as a method to immobilize lead. Environmental Science and Technology, 28(4), 646-654. DOI: 10.1021/es00053a018.10.1021/es00053a01822196548Search in Google Scholar

Ryan, J. A., Zhang, P., Hesterberg, D., Chou, J., & Sayers, D. E. (2001). Formation of chloropyromorphite in a lead-contaminated soil amended with hydroxyapatite. Environmental Science and Technology, 35(18), 3798-3803. DOI: 10.1021/es010634l.10.1021/es010634l11783662Search in Google Scholar

Sauvé, S., Martínez, C. E., McBride, M. B., & Hendershot, W. H. (2000). Adsorption of free lead (Pb2+) by pedogenic oxides, ferrihydrite, and leaf compost. Soil Science Society of America Journal, 64(2), 595-599. DOI: 10.2136/sssaj2000.642595x.10.2136/sssaj2000.642595xSearch in Google Scholar

Scheckel, K. G., & Ryan, J. A. (2002). Effects of aging and pH on dissolution kinetics and stability of chloropyromorphite. Environmental Science and Technology, 36(10), 2198-2204. DOI: 10.1021/es015803g.10.1021/es015803g12038830Search in Google Scholar

Stack, A. G., Erni, R., Browning, N. D., Casey, W. H. (2004). Pyromorphite growth on lead-sulfide surfaces. Environmental Science and Technology, 38(21), 5529-5534. DOI: 10.1021/es049487s.10.1021/es049487s15575268Search in Google Scholar

Taylor, R. W., Bleam, W. F., Ranatunga, T. D., Schulthess, C. P., Senwo, Z. N., & Ranatunga, D. R. A. (2009). X-ray absorption near edge structure study of lead sorption on phosphate-treated kaolinite. Environmental Science and Technology, 43(3), 711-717. DOI: 10.1021/es8020183.10.1021/es802018319245006Search in Google Scholar

Xie, L., & Giammar, D. E. (2007). Equilibrium solubility and dissolution rate of the lead phosphate chloropyromorphite. Environmental Science and Technology, 41(23), 8050-8055. DOI: 10.1021/es071517e.10.1021/es071517e18186336Search in Google Scholar

Zhang, P., & Ryan, J. A. (1998). Formation of pyromorphite in anglesite-hydroxyapatite suspensions under varying pH conditions. Environmental Science and Technology, 32(21), 3318-3324. DOI: 10.1021/es980232m.10.1021/es980232mSearch in Google Scholar

Zhang, P., & Ryan, J. A. (1999a). Formation of chloropyromorphite from galena (PbS) in the presence of hydroxyapatite. Environmental Science and Technology, 33(4), 618-624. DOI: 10.1021/es980314a.10.1021/es980314aSearch in Google Scholar

Zhang, P., & Ryan, J. A. (1999b). Transformation of Pb(II) from cerrusite to chloropyromorphite in the presence of hydroxyapatite. Environmental Science and Technology, 33(4), 625-630. DOI: 10.1021/es980268e.10.1021/es980268eSearch in Google Scholar

Zhang, P., Ryan, J. A., & Bryndzia, L. T. (1997). Pyromorphite formation from goethite adsorbed lead. Environmental Science and Technology, 31(9), 2673-2678. DOI: 10.1021/es970087x.10.1021/es970087xSearch in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo