Otwarty dostęp

On the Intriguing Search for Good Permutations

Uniform distribution theory's Cover Image
Uniform distribution theory
The sixth International Conference on Uniform Distribution Theory (UDT 2018) CIRM, Luminy, Marseilles, France, October 1–5, 2018

Zacytuj

[1] BEHNKE, H.: Zur Theorie der diophantischen Approximationen, Abh. Math.Sem.Hamburg 3 (1924), 261–318; 4 (1926), 33–46.Search in Google Scholar

[2] BÉJIAN, R.: Minoration de la discrépance d’une suite quelconque sur T,Acta Arith. 41 (1982), 185–202.10.4064/aa-41-2-185-202Search in Google Scholar

[3] BÉJIAN, R.—FAURE, H.: Discrépance de la suite de van der Corput, C.R. Acad. Sci. Paris Ser. A 285 (1977), 313–316.Search in Google Scholar

[4] BOURGAIN, J.—KONTOROVICH, A.: On Zaremba’s conjecture, Ann. of Math. (2) 180 (2014), 1–60.10.4007/annals.2014.180.1.3Search in Google Scholar

[5] CARLITZ, L.: Permutations in a finite field. Proc. Amer. Math. Soc. 4 (1953), 538.10.1090/S0002-9939-1953-0055965-8Search in Google Scholar

[6] CHAIX, H.—FAURE, H.: Discrépance et diaphonie en dimension un,Acta Arith. 63 (1993), 103–141.10.4064/aa-63-2-103-141Search in Google Scholar

[7] DE CLERCK, L.: A method for exact calculation of the star discrepancy of plane sets applied to sequences of Hammersley, Monatsh. Math. 101 (1986), 261–278.10.1007/BF01559390Search in Google Scholar

[8] DICK, J.—PILLICHSHAMMER, F.: Digital Nets and Sequences. Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge University Press, Cambridge, 2010.10.1017/CBO9780511761188Search in Google Scholar

[9] DRMOTA, M.—TICHY, R.F.: Sequences, Discrepancies and Applications. Lecture Notes in Mathematics Vol. 1651. Springer Verlag, Berlin, 1997.Search in Google Scholar

[10] DUPAIN, Y.—SÓS, V.: On the discrepancy of () sequences. Topics in classical number theory, Vol. I, II (Budapest, 1981), Colloq. Math. Soc. Janos Bolyai 34 (1984), 355–387.Search in Google Scholar

[11] FAURE, H.: Discrépance de suites associées à un système de numération (en dimension un), Bull. Soc. Math. France 109 (1981), 143–182.10.24033/bsmf.1935Search in Google Scholar

[12] –––––– On the star-discrepancy of generalized Hammersley sequences in two dimensions, Monatsh. Math. 101 (1986), 291–300.10.1007/BF01559392Search in Google Scholar

[13] FAURE, H.: Good permutations for extreme discrepancy, J. Number Theory 42 (1992), 47–56.10.1016/0022-314X(92)90107-ZSearch in Google Scholar

[14] –––––– Discrepancy and diaphony of digital (0, 1)-sequences in prime base,Acta Arith. 117 (2005), 125–148.10.4064/aa117-2-2Search in Google Scholar

[15] –––––– Irregularities of distribution of digital (0, 1)-sequences in prime base, Integers 5 (2005), no. 3, #A07.Search in Google Scholar

[16] –––––– Selection criteria for (random) generation of digital (0,s)-sequences. In: Proceedings of the 6th international conference Monte Carlo and quasi-Monte Carlo methods in scientific computing Juan-les-Pins, France, July 7–10, 2004, Monte Carlo and Quasi-Monte Carlo Methods 2004 (H. Niederreiter and D. Talay, eds.). Springer Berlin (2006), pp. 113–126.Search in Google Scholar

[17] –––––– Van der Corput sequences towards (0, 1)-sequences in base b,J. Théor. Nombres Bordeaux 19 (2007), 125–140.10.5802/jtnb.577Search in Google Scholar

[18] –––––– Star extreme discrepancy of generalized two-dimensional Hammersley point sets, Unif. Distrib. Theory 3 (2008), 45–65.Search in Google Scholar

[19] FAURE, H.—KRITZER, P.—PILLICHSHAMMER, F.: From van der Corput to modern constructions of sequences for quasi-Monte Carlo rules, Indag. Math., New Ser. 26 (2015), 760–822.Search in Google Scholar

[20] FAURE, H.—LEMIEUX, C.: Generalized Halton sequences in 2008: A comparative study, ACM Trans. Model. Comp. Sim. 19 (2009), 15:1-31.10.1145/1596519.1596520Search in Google Scholar

[21] FAURE, H.—PILLICHSHAMMER, F.: Lpdiscrepancy of generalized two-dimensional Hammersley point sets, Monatsh. Math. 158 (2009), 31–61.10.1007/s00605-008-0039-1Search in Google Scholar

[22] FAURE, H.—PILLICHSHAMMER, F.: L2discrepancy of two dimensional digitally shifted Hammersley point sets in base b. In: Proceedings of the 8th international conference Monte Carlo and quasi-Monte Carlo methods in scientific computing, Montréal, Canada, July 6–11, 2008, Monte Carlo and quasi-Monte Carlo methods 2008 (P. L’Ecuyer and A. B. Owen, eds.) Springer Berlin (2009), pp. 355–368.Search in Google Scholar

[23] FAURE, H.—PILLICHSHAMMER, F.—PIRSIC, G.—SCHMID, W. CH.: L2discrepancy of generalized two dimensional Hammersley point sets scrambled with arbitrary permutations,Acta Arith. 141 (2010), 395–418.10.4064/aa141-4-6Search in Google Scholar

[24] FAURE, H.—PILLICHSHAMMER, F.—PIRSIC, G.: L2discrepancy of linearly digit scrambled Zaremba point sets, Unif. Distrib. Theory 6 (2011), 59–81.Search in Google Scholar

[25] FAURE, H.—PILLICHSHAMMER, F.: L2discrepancy of generalized Zaremba point sets, J. Théor. Nombres Bordeaux 23 (2011), 121–136.10.5802/jtnb.753Search in Google Scholar

[26] –––––– A generalization of NUT digital (0, 1)-sequences and best possible lower bounds for star discrepancy,Acta Arith. 158 (2013), 321–340.10.4064/aa158-4-2Search in Google Scholar

[27] HABER, S.: On a sequence of points of interest for numerical quadrature,J. Res. Nat. Bur. Stand. Sect. B 70B (1966), no. 2. 127–136.Search in Google Scholar

[28] HALTON, J. H.: On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numer. Math. 2 (1960), 84–90.Search in Google Scholar

[29] HALTON, J. H.—ZAREMBA, S. K.: The extreme and the L2discrepancies of some plane sets, Monatsh. Math. 73 (1969), 316–328.10.1007/BF01298982Search in Google Scholar

[30] HAMMERSLEY, J. M.: Monte Carlo methods for solving multivariable problems, Ann. New York Acad. Sci. 86 (1960), 844–874.10.1111/j.1749-6632.1960.tb42846.xSearch in Google Scholar

[31] HUANG, S.: An improvement to Zaremba’s conjecture, Geom. Funct. Anal. 25 (2015), no. 3, 860–914.Search in Google Scholar

[32] KHINCHIN, A. YA. : Continued Fractions. the University of Chicago Press, Chicago, Ill.-London 1964.10.1063/1.3051235Search in Google Scholar

[33] KRITZER. P.: A new upper bound on the star discrepancy of (0, 1)-sequences, Integers 5(3) (2005), A11.Search in Google Scholar

[34] –––––– On some remarkable properties of the two-dimensional Hammersley point set in base 2,J. Théor. Nombres Bordeaux 18 (2006), 203–221.10.5802/jtnb.540Search in Google Scholar

[35] KRITZER. P.—LARCHER, G.—PILLICHSHAMMER, F.: A thorough analysis of the discrepancy of shifted Hammersley and van der Corput point sets, Ann. Mat. Pura Appl. 186 (2007), 229–250.10.1007/s10231-006-0002-5Search in Google Scholar

[36] KUIPERS, L.—NIEDERREITER, H.: Uniform Distribution of Sequences. Wiley, New York, 1974.Search in Google Scholar

[37] LARCHER, G.: On the star-discrepancy of sequences in the unit-interval,J. Complexity 31 (2015), 474–485.10.1016/j.jco.2014.07.005Search in Google Scholar

[38] –––––– On the discrepancy of sequences in the unit-interval, Indag. Math. (N.S.) 27 (2016), 546–558.10.1016/j.indag.2015.11.003Search in Google Scholar

[39] LARCHER, G.—PUCHHAMMER, F.: An improved bound for the star discrepancy of sequences in the unit interval, Unif. Distrib. Theory 11 (2016), 1–14.10.1515/udt-2016-0001Search in Google Scholar

[40] –––––– Sums of distances to the nearest integer and the discrepancy of digital nets,Acta Arith. 106.4 (2003), 379–408.10.4064/aa106-4-4Search in Google Scholar

[41] MATOUŠEK, J.: On the L2-discrepancy for anchored boxes,J. Complexity 14 (1998), 527–556.10.1006/jcom.1998.0489Search in Google Scholar

[42] NIEDERREITER, H.: Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia, 1992.10.1137/1.9781611970081Search in Google Scholar

[43] OSTROMOUKHOV, V.: Recent progress in improvement of extreme discrepancy and star discrepancy of one-dimensional sequences. In: Monte Carlo and Quasi-Monte Carlo Methods 2008 (L’Ecuyer, P. and A. B. Owen, eds.), Springer-Verlag, Berlin, 2009, 561–572.10.1007/978-3-642-04107-5_36Search in Google Scholar

[44] OSTROWSKI, A.: Bemerkungen zur Theorie der Diophantischen Approximationen I, II, III,Abh. Math.Sem.Hamburg 1 (1922), no. 1, 77–98, 249–250; 4 (1925), no. 1, 224.Search in Google Scholar

[45] PROINOV, P. D.: Estimation of L2-discrepancy of a class of infinite sequences, C.R. Acad. Bulgare Sci. 36 (1983), 37–40.Search in Google Scholar

[46] –––––– On irregularities of distribution. C.R. Acad Bulgare Sci. 39 (1986), 31–34.Search in Google Scholar

[47] PROINOV, P. D.—ATANASSOV, E, Ẏ.: On the distribution of the van der Corput generalized sequence, C.R. Acad. Sci. Paris Sér. I Math. 307 (1988), 895–900.Search in Google Scholar

[48] PROINOV, P. D.—GROZDANOV, V. S.: On the diaphony of the van der Corput-Halton sequence, J. Number Theory 30 (1988), 94–104.10.1016/0022-314X(88)90028-5Search in Google Scholar

[49] PAUSINGER, F.: Weak multipliers for generalized van der Corput sequences,J. Théor. Nombres Bordeaux 24 (2012), no. 3, 729–749.Search in Google Scholar

[50] PAUSINGER, F.—SCHMID, W. CH. : A good permutation for one-dimensional diaphony, Monte Carlo Methods Appl. 16 (2010), 307–322.10.1515/mcma.2010.015Search in Google Scholar

[51] F. PAUSINGER — A. TOPUZOĞLU: On the discrepancy of two families of permuted van der Corput sequences, Unif. Distrib. Theory 13 (2018), 47–64.10.1515/udt-2018-0003Search in Google Scholar

[52] PILLICHSHAMMER, F.: On the discrepancy of (0, 1)-sequences, J. Number Theory 104 (2004), 301–314.10.1016/j.jnt.2003.08.002Search in Google Scholar

[53] RAMSHAW, L.: On the discrepancy of the sequence formed by the multiples of an irrational number, J. Number Theory 30 (1981), 138–175.10.1016/0022-314X(81)90002-0Search in Google Scholar

[54] ROTH, K. F.: On irregularities of distribution,Mathematika 1 (1954), 73–79.10.1112/S0025579300000541Search in Google Scholar

[55] SCHMIDT, W. M.: Irregularities of distribution VII,Acta Arith. 21 (1972), 45–50.10.4064/aa-21-1-45-50Search in Google Scholar

[56] TOPUZOĞLU, A.: The Carlitz rank of permutations of finite fields: a survey,J.Symb. Comput. 64 (2014), 53–66.10.1016/j.jsc.2013.07.004Search in Google Scholar

[57] VAN DER CORPUT, J. G.: Verteilungsfunktionen. I, Proc. Kon. Ned. Akad. v. Wetensch. 38 (1935), 813–821.Search in Google Scholar

[58] –––––– Verteilungsfunktionen. II, Proc. Kon. Ned. Akad. v. Wetensch. 38 (1935), 1058–1066.Search in Google Scholar

[59] WEYL, H.:Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), 313–352.10.1007/BF01475864Search in Google Scholar

[60] XIAO, Y. J.: Suitesé quiréparties associées aux automorphismes du tore. C.R. Acad. Sci. Paris Sér. I Math. 311 (1990), 579–582.Search in Google Scholar

[61] ZAREMBA, S. K.: La méthode des bons treillis pour le calcul des intégrals multiples. In:Proc. Sympos.Univ. Montréal, September 9–14, 1971, Applications of Number Theory to Numerical Analysis (S.K. Zaremba, ed.), Academic Press, New York (1972), pp. 39–119.Search in Google Scholar

[62] ZINTERHOF, P.:Über einige Absch¨atzungen bei der Approximation von Funktionen mit Gleichverteilungsmethoden,Österr. Akad. Wiss. SB II 185 (1976), 121–132.Search in Google Scholar

eISSN:
2309-5377
Język:
Angielski