1. bookTom 23 (2022): Zeszyt 4 (November 2022)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1407-6179
Pierwsze wydanie
20 Mar 2000
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
Otwarty dostęp

Smartphone-Based Recognition of Access Trip Phase to Public Transport Stops Via Machine Learning Models

Data publikacji: 16 Nov 2022
Tom & Zeszyt: Tom 23 (2022) - Zeszyt 4 (November 2022)
Zakres stron: 273 - 283
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1407-6179
Pierwsze wydanie
20 Mar 2000
Częstotliwość wydawania
4 razy w roku
Języki
Angielski

1. Andrew, Alex M. (2001) An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Kybernetes. Search in Google Scholar

2. Asci, Guven, and Guvensan, M. Amac. (2019) A Novel Input Set for LSTM-Based Transport Mode Detection. In: 2019 IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops 2019, 107–12. DOI: 10.1109/PERCOMW.2019.8730799. Otwórz DOISearch in Google Scholar

3. Axhausen, Kay W., Schönfelder, Stefan, Wolf, Jean, Oliveira, Marcelo and Samaga, Ute. (2003) 80 Weeks of GPS-Traces: Approaches to Enriching the Trip Information. Arbeitsberichte Verkehrs-Und Raumplanung, 178. Search in Google Scholar

4. Breiman, L., Friedman, J., Olshen, R. and C. Stone. (1984) Classification and Regression Trees–Crc Press. Boca Raton, Florida. Search in Google Scholar

5. Carpineti, C., Lomonaco, V., Bedogni, L., di Felice, M. and Bononi, L. (2018) Custom Dual Transportation Mode Detection by Smartphone Devices Exploiting Sensor Diversity. In: 2018 IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops 2018, 367–72. DOI: 10.1109/PERCOMW.2018.8480119. Otwórz DOISearch in Google Scholar

6. Chia, Jason, Lee, Jinwoo and Kamruzzaman, M. D. (2016) Walking to Public Transit: Exploring Variations by Socioeconomic Status, 10(9), 805–14. DOI: 10.1080/15568318.2016.1156792. Otwórz DOISearch in Google Scholar

7. Dabiri, Sina, and Heaslip, Kevin. (2018) Inferring Transportation Modes from GPS Trajectories Using a Convolutional Neural Network. Transportation Research Part C: Emerging Technologies, 86, 360–371. DOI: 10.1016/J.TRC.2017.11.021. Otwórz DOISearch in Google Scholar

8. Devaul, Richard W., and Dunn, Steve. (2001) Real-Time Motion Classification for Wearable Computing Applications. Search in Google Scholar

9. Efthymiou, Alexandros, Barmpounakis, Emmanouil N., Efthymiou, Dimitrios and Vlahogianni, Eleni I. (2019) Transportation Mode Detection from Low-Power Smartphone Sensors Using Tree-Based Ensembles. Journal of Big Data Analytics in Transportation 2019, 1(1), 57–69. DOI: 10.1007/S42421-019-00004-W. Otwórz DOISearch in Google Scholar

10. El-Geneidy, Ahmed, Grimsrud, Michael, Wasfi, Rania, Tétreault, Paul and Surprenant-Legault, Julien. (2014) New Evidence on Walking Distances to Transit Stops: Identifying Redundancies and Gaps Using Variable Service Areas. Transportation, 41(1), 193–210. DOI: 10.1007/S11116-013-9508-Z/FIGURES/4. Otwórz DOISearch in Google Scholar

11. Erkan, Uğur, Gökrem, Levent and Enginoğlu, Serdar. (2018) Different Applied Median Filter in Salt and Pepper Noise. Computers & Electrical Engineering, 70, 789–798. DOI: 10.1016/J.COMPELECENG.2018.01.019. Otwórz DOISearch in Google Scholar

12. Ferreira, Paulo, Zavgorodnii, Constantin and Veiga, Luís. (2020) EdgeTrans - Edge Transport Mode Detection. Pervasive and Mobile Computing, 69, 101268. DOI: 10.1016/J.PMCJ.2020.101268. Otwórz DOISearch in Google Scholar

13. He, Jinliao, Zhang, Ruozhu, Huang, Xianjin and Xi, Guangliang. (2018) Walking Access Distance of Metro Passengers and Relationship with Demographic Characteristics: A Case Study of Nanjing Metro. Chinese Geographical Science 2018, 28(4), 612–623. DOI: 10.1007/S11769-018-0970-6. Otwórz DOISearch in Google Scholar

14. Ho, Tin Kam. (1995) Random Decision Forests. In: Proceedings of 3rd international conference on document analysis and recognition, 1, 278–282. Search in Google Scholar

15. Ioffe, Sergey, and Szegedy, Christian. (2015) Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: International conference on machine learning, 448–56. PMLR. Search in Google Scholar

16. Jiang, Xiang, de Souza, Erico N., Pesaranghader, Ahmad, Hu, Baifan, Silver, Daniel L. and Matwin, Stan. (2017) TrajectoryNet: An Embedded GPS Trajectory Representation for Point-Based Classification Using Recurrent Neural Networks’. Proceedings of the 27th Annual International Conference on Computer Science and Software Engineering, CASCON 2017, 9, 192–200. DOI: 10.48550/arxiv.1705.02636. Otwórz DOISearch in Google Scholar

17. Khan, Inayat, Khusro, Shah, Ali, Shaukat and Ahmad, Jamil. (2016) Sensors Are Power Hungry: An Investigation of Smartphone Sensors Impact on Battery Power from Lifelogging Perspective’. Bahria University Journal of Information & Communication Technologies (BUJICT), 9(2). Search in Google Scholar

18. Liang, Xiaoyuan, and Wang, Guiling. (2017) A Convolutional Neural Network for Transportation Mode Detection Based on Smartphone Platform. Proceedings – 14th IEEE International Conference on Mobile Ad Hoc and Sensor Systems, MASS 2017, 338–342. DOI: 10.1109/MASS.2017.81. Otwórz DOISearch in Google Scholar

19. Lin, Guifang, and Shen, Wei. (2018) Research on Convolutional Neural Network Based on Improved Relu Piecewise Activation Function. Procedia Computer Science, 131, 977–984. DOI: 10.1016/J.PROCS.2018.04.239. Otwórz DOISearch in Google Scholar

20. Lorintiu, Oana, and Vassilev, Andrea. (2016) Transportation Mode Recognition Based on Smartphone Embedded Sensors for Carbon Footprint Estimation. IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, 0, 1976–1981. DOI: 10.1109/ITSC.2016.7795875. Otwórz DOISearch in Google Scholar

21. Manzoni, Vincenzo, Maniloff, Diego, Kloeckl, Kristian and Ratti, Carlo. (2010) Transportation Mode Identification and Real-Time CO2 Emission Estimation Using Smartphones. SENSEable City Lab, Massachusetts Institute of Technology, Nd. Search in Google Scholar

22. Mucherino, Antonio, Papajorgji, Petraq J. and Pardalos, Panos M. (2009) K-Nearest Neighbor Classification. Data mining in agriculture, 83–106. Springer.10.1007/978-0-387-88615-2_4 Search in Google Scholar

23. Muller, Ian Anderson Henk. (2006) Practical Activity Recognition Using GSM Data. In: Proceedings of the 5th International Semantic Web Conference (ISWC). Athens, 1. Citeseer. Search in Google Scholar

24. Nham, Ben, Siangliulue, Kanya and Yeung, Serena. (2008) Predicting Mode of Transport from Iphone Accelerometer Data. Machine Learning Final Projects, Stanford University. Search in Google Scholar

25. Nygaard, Magnus Frestad. (2016) Waiting Time Strategy for Public Transport Passengers. 61. Search in Google Scholar

26. Priscoli, Francesco Delli, Giuseppi, Alessandro and Lisi, Federico. (2020) Automatic Transportation Mode Recognition on Smartphone Data Based on Deep Neural Networks. Sensors 2020, 20(24), 7228. DOI: 10.3390/S20247228. Otwórz DOISearch in Google Scholar

27. Quintella, Carlos Alvaro De M. S., Andrade, Leila C. V. and Campos, Carlos Alberto v. (2016) Detecting the Transportation Mode for Context-Aware Systems Using Smartphones. IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, 2261–2266. DOI: 10.1109/ITSC.2016.7795921. Otwórz DOISearch in Google Scholar

28. Reddy, Sasank, Mun, Min, Burke, Jeff, Estrin, Deborah, Hansen, Mark and Srivastava, Mani. (2010) Using Mobile Phones to Determine Transportation Modes. ACM Transactions on Sensor Networks (TOSN), 6(2). DOI: 10.1145/1689239.1689243. Otwórz DOISearch in Google Scholar

29. Scherer, Dominik, Müller, Andreas and Behnke, Sven. (2010) Evaluation of Pooling Operations in Convolutional Architectures for Object Recognition. In: International conference on artificial neural networks, 92–101. Springer.10.1007/978-3-642-15825-4_10 Search in Google Scholar

30. Sokolova, Marina, and Lapalme, Guy. (2009) A Systematic Analysis of Performance Measures for Classification Tasks. Information Processing & Management, 45(4), 427–37.10.1016/j.ipm.2009.03.002 Search in Google Scholar

31. Srivastava, Nitish, Hinton, Geoffrey, Krizhevsky, Alex, Sutskever, Ilya and Salakhutdinov, Ruslan. (2014) Dropout: A Simple Way to Prevent Neural Networks from Overfitting. The Journal of Machine Learning Research, 15(1), 1929–1958. Search in Google Scholar

32. Tennøy, Aud, Knapskog, Marianne and Wolday, Fitwi. (2022) Walking Distances to Public Transport in Smaller and Larger Norwegian Cities. Transportation Research Part D: Transport and Environment, 103, 103169. DOI: 10.1016/J.TRD.2022.103169. Otwórz DOISearch in Google Scholar

33. Voss, Christine, Winters, Meghan, Frazer, Amanda and McKay, Heather. (2015) School-Travel by Public Transit: Rethinking Active Transportation. Preventive Medicine Reports, 2, 65–70. DOI: 10.1016/J.PMEDR.2015.01.004.471683526793430 Otwórz DOISearch in Google Scholar

34. Wang, Shuangquan, Chen, Canfeng and Ma, Jian. (2010) Accelerometer Based Transportation Mode Recognition on Mobile Phones. APWCS 2010 - 2010 Asia-Pacific Conference on Wearable Computing Systems, 44–46. DOI: 10.1109/APWCS.2010.18. Otwórz DOISearch in Google Scholar

35. Zhao, Hong, Hou, Chunning, Alrobassy, Hala and Zeng, Xiangyan. (2019) Recognition of Transportation State by Smartphone Sensors Using Deep Bi-LSTM Neural Network. Journal of Computer Networks and Communications. doi: 10.1155/2019/4967261. Otwórz DOISearch in Google Scholar

36. Zheng, Yu, Li, Quannan, Chen, Yukun, Xie, Xing, and Wei Ying Ma. (2008) Understanding Mobility Based on GPS Data. UbiComp 2008 - Proceedings of the 10th International Conference on Ubiquitous Computing, 312–321. DOI: 10.1145/1409635.1409677. Otwórz DOISearch in Google Scholar

37. Zuo, Ting, Wei, Heng and Rohne, Andrew. (2018) Determining Transit Service Coverage by Non-Motorized Accessibility to Transit: Case Study of Applying GPS Data in Cincinnati Metropolitan Area. Journal of Transport Geography, 67, 1–11. DOI: 10.1016/J.JTRANGEO.2018.01.002. Otwórz DOISearch in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo