1. bookTom 79 (2021): Zeszyt 2 (December 2021)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1338-9750
Pierwsze wydanie
12 Nov 2012
Częstotliwość wydawania
3 razy w roku
Języki
Angielski
access type Otwarty dostęp

Oscillation Tests for Linear Difference Equations with Non-Monotone Arguments

Data publikacji: 01 Jan 2022
Tom & Zeszyt: Tom 79 (2021) - Zeszyt 2 (December 2021)
Zakres stron: 81 - 100
Otrzymano: 23 Aug 2020
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1338-9750
Pierwsze wydanie
12 Nov 2012
Częstotliwość wydawania
3 razy w roku
Języki
Angielski
Abstract

This paper presents sufficient conditions involving limsup for the oscillation of all solutions of linear difference equations with general deviating argument of the form Δx(n)+p(n)x(τ(n))=0,n0[x(n)q(n)x(σ(n))=0,n],\[\Delta x(n) + p(n)x(\tau (n)) = 0,\,n \in {_0}\quad [\nabla x(n) - q(n)x(\sigma (n)) = 0,\,n \in ],\ , where (p(n))n0 and (q(n))n1 are sequences of nonnegative real numbers and (τ(n))n0,(σ(n))n1\[{(\tau (n))_{n \ge 0}},\quad {(\sigma (n))_{n \ge 1}}\] are (not necessarily monotone) sequences of integers. The results obtained improve all well-known results existing in the literature and an example, numerically solved in MATLAB, illustrating the significance of these results is provided.

Keywords

[1] BRAVERMAN, E.—CHATZARAKIS, G.E.—STAVROULAKIS, I. P.: Iterative oscillation tests for difference equations with several non-monotone arguments, J. Difference Equ. Appl. 21 (2015), no. 9, 854–874. Search in Google Scholar

[2] E. BRAVERMAN, E.—KARPUZ, B.: On oscillation of differential and difference equations with non-monotone delays, Appl. Math. Comput. 218 (2011), 3880–3887.10.1016/j.amc.2011.09.035 Search in Google Scholar

[3] CHATZARAKIS, G.E.: Sufficient oscillation conditions for deviating difference equations, Filomat 33 (2019), no. 11, 3291–3305. Search in Google Scholar

[4] CHATZARAKIS, G. E.—JADLOVSKÁ, I.: Oscillations in deviating difference equations using an iterative technique, J. Inequal. Appl. 2017, Paper No. 173, 24 pp.10.1186/s13660-017-1450-8 Search in Google Scholar

[5] CHATZARAKIS, G.E.—JADLOVSKÁ, I.: Improved iterative oscillation tests for first-order deviating difference equations, Int. J. Difference Equ. 12 (2017), no. 2, 185—210. Search in Google Scholar

[6] CHATZARAKIS, G. E.—KOPLATADZE, R.—STAVROULAKIS, IP.: Oscillation criteria of first order linear difference equations with delay argument, Nonlinear Anal. 68 (2008), 994–1005.10.1016/j.na.2006.11.055 Search in Google Scholar

[7] CHATZARAKIS, G. E.—R. KOPLATADZE, R.—STAVROULAKIS, I. P.: Optimal oscillation criteria for first order difference equations with delay argument, Pacific J. Math. 235 (2008), 15–33.10.2140/pjm.2008.235.15 Search in Google Scholar

[8] CHATZARAKIS, G. E.—PURNARAS, I. K.—STAVROULAKIS, I. P.: Oscillations of deviating difference equations with non-monotone arguments, J. Difference Equ. Appl. 23 (2017), no. 8, 1354–1377. Search in Google Scholar

[9] CHATZARAKIS, G.E.—SHAIKHET, L.: Oscillation criteria for difference equations with non-monotone arguments, Adv. Difference Equ. 2017, Paper No. 62, 16 pp.10.1186/s13662-017-1119-0 Search in Google Scholar

[10] CHATZARAKIS, G. E.—STAVROULAKIS, I. P.: Oscillations of difference equations with general advanced argument, Cent. Eur. J. Math. 10 (2012), 807–823.10.2478/s11533-011-0137-5 Search in Google Scholar

[11] CHEN, M.-P.—YU, J.S.: Oscillations of delay difference equations with variable coefficients. In: Proceedings of the First International Conference on Difference Equations, Gordon and Breach, London, 1994, pp. 105–114. Search in Google Scholar

[12] LI, X.—ZHU, D.: Oscillation of advanced difference equations with variable coefficients, Ann. Differential Equations 18 (2002), 254–263. Search in Google Scholar

[13] TANG, X. H.—YU, J.S.: Oscillation of delay difference equations, Comput. Math. Appl. 37 (1999), 11–20.10.1016/S0898-1221(99)00083-8 Search in Google Scholar

[14] TANG, X. H.— ZHANG, R.Y.: New oscillation criteria for delay difference equations, Comput. Math. Appl. 42 (2001), 1319–1330.10.1016/S0898-1221(01)00243-7 Search in Google Scholar

[15] YAN, W.—MENG, Q.—YAN, J.: Oscillation criteria for difference equation of variable delays, DCDIS Proceedings 3 (2005), 641–647. Search in Google Scholar

[16] ZHANG, B. G. —TIAN, C. J.: Nonexistence and existence of positive solutions for difference equations with unbounded delay, Comput. Math. Appl. 36 (1998), 1–8.10.1016/S0898-1221(98)00103-5 Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo