1. bookTom 78 (2021): Zeszyt 1 (October 2021)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1338-9750
Pierwsze wydanie
12 Nov 2012
Częstotliwość wydawania
3 razy w roku
Języki
Angielski
access type Otwarty dostęp

A Fixed Point Approach to the Hyers-Ulam-Rassias Stability Problem of Pexiderized Functional Equation in Modular Spaces

Data publikacji: 01 Jan 2022
Tom & Zeszyt: Tom 78 (2021) - Zeszyt 1 (October 2021)
Zakres stron: 59 - 72
Otrzymano: 04 Nov 2020
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1338-9750
Pierwsze wydanie
12 Nov 2012
Częstotliwość wydawania
3 razy w roku
Języki
Angielski
Abstract

In this paper, we consider pexiderized functional equations for studying their Hyers-Ulam-Rassias stability. This stability has been studied for a variety of mathematical structures. Our framework of discussion is a modular space. We adopt a fixed-point approach to the problem in which we use a generalized contraction mapping principle in modular spaces. The result is illustrated with an example.

Keywords

[1] ABDOU, A.A.N.—KHAMSI, M.A.: Fixed point theorems in modular vector spaces, J. Nonlinear Sci. Appl. 10 (2017), 4046–4057.10.22436/jnsa.010.08.01 Search in Google Scholar

[2] GRABIEC, A.: The generalized Hyers-Ulam stability of a class of functional equations, Publ. Math. Debrecen 48 (1996), 217–235. Search in Google Scholar

[3] MIRMOSTAFAEE, V.—MOSLEHIAN, M. S.: Stability of additive mappings in non-Archimedean fuzzy normed spaces, Fuzzy Sets and 5ystems 160 (2009), 1643–1652.10.1016/j.fss.2008.10.011 Search in Google Scholar

[4] KIM, C.—PARK, S.W.: A Fixed point approach to the stability of additive-quadratic functional equations in modular spaces, J. of The Chungcheong Math. Soc. 18 (2015), 321–330.10.14403/jcms.2015.28.2.321 Search in Google Scholar

[5] HYERS, D. H.: On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222–224.10.1073/pnas.27.4.222107831016578012 Search in Google Scholar

[6] HYERS, D. H.: Stability of functional equations in several variables. Birkhauser, 1998.10.1007/978-1-4612-1790-9 Search in Google Scholar

[7] ELQORACHI, E.—RASSIAS, M. TH.: Generalized Hyers-Ulam stability of trigonometric functional equations, Mathematics, 6 (2018). Search in Google Scholar

[8] CRIVELLI, F.: Absolute values, valuations and completion. Algebra in Positive Characteristic, 2008. Search in Google Scholar

[9] SADEGHI, G.: A fixed point approach to stability of functional equations in modular spaces. Bull. Malays. Math. Sci. Soc. 37 (2014), no.2., 333–344. Search in Google Scholar

[10] H. CHODA, H.—MIURA, F.—TAKAHASI, S.: On the Hyers–Ulam stability of real continuous function valued differentiable map, Tokyo J. Math. 24 (2001), 467–476.10.3836/tjm/1255958187 Search in Google Scholar

[11] KIM, H.—HONG, Y.: Approximate Cauchy-Jensen type mappings in modular spaces, Far East J. Math. Sci. 7 (2017), 1319–1336. Search in Google Scholar

[12] NAKANO, H.: Modular on Semi-Ordered Spaces. Tokyo, Japan, 1959. Search in Google Scholar

[13] ACZEL, J.—DHOMBRES, J.: Functional Equations in Several Variables. With Applications to Mathematics, Information Theory and to the Natural and Social Sciences. Encyclopedia of Mathematics and Its Applications Vol. 31. Cambridge University Press, Cambridge, 1989. Search in Google Scholar

[14] CHMIELINSKI, J.—TABOR, J.: On approximate solutons of the Pexider equation, Aequationes Math. 46 (1993), 143–163.10.1007/BF01834004 Search in Google Scholar

[15] WANG, J.: Some further generalization of the Ulam-Hyers-Rassias stability of functional equations, J. Math. Anal. Appl. 263 (2001), 406–423.10.1006/jmaa.2001.7626 Search in Google Scholar

[16] PARNAMI, J.C.—VASUDEVA, H.L.: On Jensen’s functional equation, Aequationes Math. 43 (1992), 211–218.10.1007/BF01835703 Search in Google Scholar

[17] MUSIELAK, J.: Orlicz Spaces and Modular Spaces. In: Lecture Notes in Math. Vol. 1034, Springer-Verlag, Berlin, 1983. Search in Google Scholar

[18] WONGKUM, K.—CHAIPUNYA, P.—KUMAM P.: On the generalized Ulam-Hyers-Rassias stability of quadratic mappings in modular spaces without Δ2-conditions, J. Funct. Spaces (2015), Article ID 461719, 6 p. Search in Google Scholar

[19] WONGKUM, K.—KUMAMA, P.—CHOB, Y.—THOUNTHONGE, P.—CHAIPUNYAA, P.: On the generalized Ulam-Hyers-Rassias stability for quartic functional equation in modular spaces, J. Nonlinear Sci. Appl. 10 (2017), 1399–1406.10.22436/jnsa.010.04.10 Search in Google Scholar

[20] CADARIU, L.—RADU, V.: Fixed points and the stability of Jensen’s functional equation, JIPAM. J. Inequal. Pure Appl. Math. 4 (2003), no. 1, 1–15. Search in Google Scholar

[21] CADARIU, L.—RADU, V.: Fixed points and stability for functional equations in probabilistic metric and random normed spaces, Fixed Point Theory and Appl. (2009), Article ID 589143, 18 p. Search in Google Scholar

[22] KHAMSI, M.A.: Quasicontraction mappings in modular spaces without Δ2-condition, Fixed Point Theory Appl. (2008), Article ID 916187, 6 p. Search in Google Scholar

[23] KHAMSI, M. A.—KOZLOWSKI, W. M.: Fixed Point Theory in Modular Function Spaces. Birkhäuser/Springer, Cham, Heidelberg, New York, 2015.10.1007/978-3-319-14051-3 Search in Google Scholar

[24] GHAEMI, M. B.—CHOUBIN, M.—SADEGHI, G.—GORDJI, M.: A Fixed point approach to stability of quintic functional equations in modular spaces, Kyungpook Math. J. 55 (2015), 313–326.10.5666/KMJ.2015.55.2.313 Search in Google Scholar

[25] ABDOLLAHPOUR, M. R.—RASSIAS, M. TH.: Hyers-Ulam Stability of hypergeometric differential equations, Aequationes Math. 93 (2019), 691–698.10.1007/s00010-018-0602-3 Search in Google Scholar

[26] RASSIAS, M. TH.: Solution of a functional equation problem of Steven Butler, Octogon Math. Mag. 12 (2004), 152–153. Search in Google Scholar

[27] KAYAL, N. C.—SAMANTA, T. K.—SAHA, P.—CHOUDHURY, B.S.: A Hyers-Ulam-Rassias stability result for functional equations in intuitionistic fuzzy Banach spaces, Iranian J. Fuzzy Systems 13, (2016), 87–96. Search in Google Scholar

[28] KANNAPPAN, PL.: Functional Equations and Inequalities with Applications. In: Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2009.10.1007/978-0-387-89492-8 Search in Google Scholar

[29] SAHOO, P. K.—KANNAPPAN, PL.: Introduction to Functional Equations. CRC Press, Boca Raton, FL, 2011.10.1201/b10722 Search in Google Scholar

[30] SAHA, P.—SAMANTA, T. K. —MONDAL, P.—CHOUDHURY, B. S.: Stability of two variable pexiderized quadratic functional equation in intuitionistic fuzzy Banach spaces, Proyecciones 38, no. 3, (2019), 447–467. Search in Google Scholar

[31] JUNG, S. M.: Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis. Springer-Verlag, Berlin, 2011.10.1007/978-1-4419-9637-4 Search in Google Scholar

[32] JUNG, S.M.: Hyers-Ulam stability of linear differential equations of first order II, App. Math. Lett. 19, (2006), 854–858.10.1016/j.aml.2005.11.004 Search in Google Scholar

[33] JUNG, S. M.—RASSIAS, M. TH.—MORTICI, C.: On a functional equation of trigonometric type, Appl. Math. Comp. 252 (2015), 294–303.10.1016/j.amc.2014.12.019 Search in Google Scholar

[34] JUNG, S. M.—RASSIAS, M. TH.: A linear functional equation of third order associated to the Fibonacci numbers, Abstr. Appl. Anal. 2014 (2014), Article ID 137468. Search in Google Scholar

[35] JUNG, S.M.—POPA, D.—RASSIAS, M.TH.: On the stability of the linear functional equation in a single variable complete metric group, J. Global Optim. 59 (2014), 165–171.10.1007/s10898-013-0083-9 Search in Google Scholar

[36] ULAM, S. M.: Problems in Modern Mathematics. Chapter VI, Science Editions John Wiley & Sons, Inc., New York, 1964. Search in Google Scholar

[37] MIURA, T.—MIYAJIMA, S.—TIKAHASI, S.: A characterization of Hyers–Ulam stability of first order linear differential operators, J. Math. Appl. 286 (2003), 136–146. Search in Google Scholar

[38] SAMANTA, T. K.—MONDAL, P.—KAYAL, N. C.: The generalized Hyers-Ulam-Rassias stability of a quadratic functional equation in fuzzy Banach spaces, Ann. Fuzzy Math. Inform. 6 (2013), 59–68. Search in Google Scholar

[39] RASSIAS, M. TH.: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soci. 72 (1978) no. 2, 297–300. Search in Google Scholar

[40] RASSIAS, M.TH.: Functional Equations and Inequalities. Kluwer Academic Publishers, 2000.10.1007/978-94-011-4341-7 Search in Google Scholar

[41] KOZLOWSKI, W. M.: Modular Function Spaces. In: Series of Monographs and Textbooks in Pure and Applied Mathematics Vol. 122, Marcel Dekker, New York, 1988. Search in Google Scholar

[42] DONG, Y.: On approximate isometries and application to stability of a function, J. Math. Anal. Appl. 426 (2015), 125–137.10.1016/j.jmaa.2015.01.045 Search in Google Scholar

[43] LEE, Y. H.—JUNG, S. M.—RASSIAS, M. TH.: On an n-dimensional mixed type additive and uadratic functional equation, Applied Mathematics and Computation, 228 (2014), 13–16.10.1016/j.amc.2013.11.091 Search in Google Scholar

[44] LEE, Y. H.—JUNG, S. M.—RASSIAS, M. TH.: Uniqueness theorems on functional inequalities concerning cubic-quadratic-additive equation, J. Math. Inequal. 12 (2018), no. 1, 43–61. Search in Google Scholar

[45] GAJDA, Z.: On stability of additive mapping, J. Math. Math. Sci. 14 (1991), 431–434.10.1155/S016117129100056X Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo