1. bookTom 75 (2020): Zeszyt 1 (April 2020)
    Applied Mathematics'19
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1338-9750
Pierwsze wydanie
12 Nov 2012
Częstotliwość wydawania
3 razy w roku
Języki
Angielski
Otwarty dostęp

Necessary and Sufficient Conditions for Oscillation of Second-Order Delay Differential Equations

Data publikacji: 24 Apr 2020
Tom & Zeszyt: Tom 75 (2020) - Zeszyt 1 (April 2020) - Applied Mathematics'19
Zakres stron: 135 - 146
Otrzymano: 30 Mar 2019
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1338-9750
Pierwsze wydanie
12 Nov 2012
Częstotliwość wydawania
3 razy w roku
Języki
Angielski

[1] AGARWAL, R. P.—BERZANSKY, L.—BRAVERMAN, E.—DOMOSHNITSKY, A.: Nonoscillation theory of functional differential equations with applications, Springer-Verlag, Berliln, 2012.10.1007/978-1-4614-3455-9Search in Google Scholar

[2] BACULÍKOVÁ, B.— LI, T.—DŽURINA, J.: Oscillation theorems for second order neutral differential equations, Elect. J. Qual. Theory. Differ. Equ. (74), (2011), 1–13.10.14232/ejqtde.2011.1.74Search in Google Scholar

[3] BACULÍKOVÁ, B.—DŽURINA, J.: Oscillation theorems for second order neutral differential equations, Comput. Math. Appl. 61 (2011), 94–99.10.1016/j.camwa.2010.10.035Search in Google Scholar

[4] BACULÍKOVÁ, B.—DŽURINA, J.: Oscillation theorems for second-order nonlinear neutral differential equations, Comput. Math. Appl. 62 (2011), 4472–4478.10.1016/j.camwa.2011.10.024Search in Google Scholar

[5] BRANDS, J. J. M. S.: Oscillation theorems for second-order functional-differential equations, J. Math. Anal. Appl. 63 (1978), no. 1, 54–64.Search in Google Scholar

[6] CHATZARAKIS, G. E.—DŽURINA, J.—JADLOVSKÁ, I.: New oscillation criteria for second-order half-linear advanced differential equations, Appl. Math. Comput. 347 (2019), 404–416.Search in Google Scholar

[7] CHATZARAKIS, G. E.—JADLOVSKÁ, I: Improved oscillation results for second-order half-linear delay differential equations, Hacet. J. Math. Stat. 48 (2019), no. 1, 170–179.Search in Google Scholar

[8] CHATZARAKIS, G. E.—DŽURINA, J.—JADLOVSKÁ, I.: A remark on oscillatory results for neutral differential equations, Appl. Math. Lett., 90 (2019), 124–130.10.1016/j.aml.2018.10.022Search in Google Scholar

[9] DŽURINA, J.: Oscillation theorems for second order advanced neutral differential equations, Tatra Mt. Math. Publ. 48 (2011), 61–71. (DOI:10.2478/v10127-011-0006-4)Search in Google Scholar

[10] FIŠNAROVÁ, S.—MAŘÍK, R.: Oscillation of neutral second order half-linear differential equations without commutativity in delays, Math. Sovaca, 67 (2017), no. 3, 701–718.Search in Google Scholar

[11] GYÖRI, I.—LADAS, G.: Oscillation Theory of Delay Differential Equations with Applications, Clarendon, Oxford, 1991.Search in Google Scholar

[12] HASANBULLI, M.—ROGOVCHENKO, Y. V.: Oscillation criteria for second order nonlinear neutral differential equations, Appl. Math. Comput. 215 (2010), 4392–4399.Search in Google Scholar

[13] KARPUZ, B.—SANTRA, S. S.: ; Oscillation theorems for second-order nonlinear delay differential equations of neutral type, Hacettepe J. Math. Stat. 48 (2019), no. 3, 633–643.Search in Google Scholar

[14] LADDE, G. S. —V. LAKSHMIKANTHAM, V.—ZHANG, B. G.: Oscillation Theory of Differential Equations with Deviating Arguments, Marcel Dekker, New York and Basel, 1987.Search in Google Scholar

[15] LI, Q—WANG, R.—CHEN, F.—LI, T.: Oscillation of second-order nonlinear delay differential equations with nonpositive neutral coefficients, Adv. Difference. Equ. 35 (2015), p. 7. (DOI 10.1186/s13662-015-0377-y)10.1186/s13662-015-0377-ySearch in Google Scholar

[16] LIU, Y.—ZHANGA, J.—YAN, J.: Existence of oscillatory solutions of second order delay differential equations, J. Comp. Appl. Math. 277 (2015), 17–22.10.1016/j.cam.2014.08.025Search in Google Scholar

[17] PINELAS, S.—SANTRA S. S.: Necessary and sufficient condition for oscillation of nonlinear neutral first order differential equations with several delays, J. Fixed Point Theory Appl. 20 (2018), no. 1, 1–13. (Article Id. 27)Search in Google Scholar

[18] SANTRA S. S.: Existence of positive solution and new oscillation criteria for nonlinear first-order neutral delay differential equations,Differ. Equ.Appl. 8 (2016), no. 1, 33–51.Search in Google Scholar

[19] SANTRA S. S.: Oscillation analysis for nonlinear neutral differential equations of second order with several delays,Mathematica 59(82) (2017), no. (1–2), 111–123.Search in Google Scholar

[20] SANTRA S. S.: Oscillation analysis for nonlinear neutral differential equations of second order with several delays and forcing term,Mathematica 61(84) (2019), no. 1, 63–78.Search in Google Scholar

[21] SANTRA S. S.: Necessary and sufficient condition for the solutions of first-order neutral differential equations to be oscillatory or tend to Zero, Kyungpok Math. J. 59 (2019), 73–82.Search in Google Scholar

[22] SANTRA, S. S.: Necessary and sufficient condition for oscillatory and asymptotic behaviour of second-order functional differential equations, Krag. J. Math. 44 (2020), no. 3, 459–473.Search in Google Scholar

[23] WONG, J.S.W.: Necessary and sufficient conditions for oscillation of second order neutral differential equations, J. Math. Anal. Appl. 252 (2000), no. 1, 342–352.Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo