Otwarty dostęp

The Zariski Topology on the Graded Primary Spectrum Over Graded Commutative Rings

 oraz   
15 lis 2019

Zacytuj
Pobierz okładkę

[1] AL-ZOUBI, K.—QARQAZ, F.: An intersection condition for graded prime ideals, Boll. Unione Mat. Ital. 11 (2018), 483–488.10.1007/s40574-017-0148-7Search in Google Scholar

[2] MUNKRES, J. R.: Topology. A a first course, Prentice-Hall, Inc. XVI, Englewood Cliffs, New Jersey, 1975.Search in Google Scholar

[3] NĂSTĂSESCU, C.—VAN OYSTAEYEN, F.: Graded and Filtered Rings and Modules. In: Lecture Notes in Math., Vol. 758, Springer-Verlag, Berlin, 1979.10.1007/BFb0067331Search in Google Scholar

[4] _______ Graded Ring Theory. In: textslMathematical Library, Vol. 28, North-Holand Publishing Co., Amsterdam-New York, 1982.Search in Google Scholar

[5] _______ Methods of Graded Rings.In: Lecture Notes in Math., Vol. 1836, Springer-Verlag, Berlin, 2004.Search in Google Scholar

[6]ÖZKIRIŞCI, N. A.—KILIÇ, Z.—KOÇ, S.: A note on primary spectrum over commutative rings, An. Ştiinţ. Univ. Al. I. Cuza Iaşi.Mat.(N.S.) 64 (2018), no. 1, 111–119.Search in Google Scholar

[7] OZKIRISCI, N. A.—ORAL, K. H.—TEKIR, U.: Graded prime spectrum of a graded module, Iran J.Sci.Technol. 37A3 (2013), 411–420.Search in Google Scholar

[8] REFAI, M.: On properties of G-spec(R), Sci. Math. Jpn. 53 (2001), no. 3,411–415.10.1186/BF03353250Search in Google Scholar

[9] REFAI, M.—AL-ZOUBI, K.: On graded primary ideals,Turkish. J.Math. 28 (2004), no. 3, 217–229.Search in Google Scholar

[10] REFAI, M.—HAILAT, M.—OBIEDAT, S.: Graded radicals on graded prime spectra, Far East J. of Math. Sci. (FJMS) Spec. Vol., Part I, (2000), 59–73.Search in Google Scholar

[11] UREGEN, R. N.—TEKIR, U.—ORAL, K. H.: On the union of graded prime ideals, 14, no. 1, 114–118; https://doi.org/10.1515/phys-2016-0011.10.1515/phys-2016-0011Open DOISearch in Google Scholar

Język:
Angielski
Częstotliwość wydawania:
3 razy w roku
Dziedziny czasopisma:
Matematyka, Matematyka ogólna