Otwarty dostęp

Oscillation Tests for Fractional Difference Equations

,  oraz   
25 sty 2019

Zacytuj
Pobierz okładkę

In this paper, we study the oscillatory behavior of solutions of the fractional difference equation of the form

Δ(r(t)g(Δαx(t)))+p(t)f(s=t0t1+α(ts1)(α)x(s))=0,t𝕅t0+1α,$$\Delta \left( {r\left( t \right)g\left( {{\Delta ^\alpha }x(t)} \right)} \right) + p(t)f\left( {\sum\limits_{s = {t_0}}^{t - 1 + \alpha } {{{(t - s - 1)}^{( - \alpha )}}x(s)} } \right) = 0, & t \in {_{{t_0} + 1 - \alpha }},$$

where Δα denotes the Riemann-Liouville fractional difference operator of order α, 0 < α ≤ 1, ℕt0+1−α={t0+1−αt0+2−α…}, t0 > 0 and γ > 0 is a quotient of odd positive integers. We establish some oscillatory criteria for the above equation, using the Riccati transformation and Hardy type inequalities. Examples are provided to illustrate the theoretical results.

Język:
Angielski
Częstotliwość wydawania:
3 razy w roku
Dziedziny czasopisma:
Matematyka, Matematyka ogólna