Zacytuj

[1] IEA, 2019, The Role of Gas in Today’s Energy Transitions, IEA Publications Paris, https://www.iea.org/reports/the-role-of-gas-in-todays-energy-transitions (Accessed on 20/11/2020). Search in Google Scholar

[2] Europian Commission, 2020, A hydrogen strategy for a climate-neutral Europe, Communication COM/2020/301, https://ec.europa.eu/energy/sites/ener/files/hydrogen_strategy.pdf (Accessed on 20/11/2020). Search in Google Scholar

[3] IEA, 2020, Current limits on hydrogen blending in natural gas networks and gas demand per capita in selected locations, IEA, Paris https://www.iea.org/data-and-statistics/charts/current-limits-on-hydrogen-blending-in-natural-gas-networks-and-gas-demand-per-capita-in-selected-locations (Accessed on 20/11/2020). Search in Google Scholar

[4] Wolański, P., 2013, “Detonative propulsion,” Proceedings of the Combustion Institute, 34(1), pp. 125-158, doi: 10.1016/j.proci.2012.10.005.10.1016/j.proci.2012.10.005 Search in Google Scholar

[5] Lee, J. H. S., 2008, The Detonation Phenomenon, Cambridge University Press, NY, USA. doi: 10.1017/CBO9780511754708.10.1017/CBO9780511754708 Search in Google Scholar

[6] Oran, E. S., and Gamezo, V. N., 2007, “Origins of the deflagration-to-detonation transition in gas-phase combustion,” Combustion and Flame, 148(1-2), pp. 4-47, doi: 10.1016/j.combustflame.2006.07.010.10.1016/j.combustflame.2006.07.010 Search in Google Scholar

[7] Wu, Y., Zheng, Q., and Weng, Ch. 2018, “An experimental study on the detonation transmission behaviours in acetylene-oxygen-argon mixtures,” Energy, 143, pp. 554-561, doi: 10.1016/j.energy.2017.11.019.10.1016/j.energy.2017.11.019 Search in Google Scholar

[8] Wang, L.-Q., Ma, H.-H., Shen, Zh.-W., and Chen, D.-G. 2018, “Experimental study of DDT in hydrogen-methane-air mixtures in a tube filled with square orifice plates,” Process Safety and Environmental Protection, 116, pp. 228-234, doi: 10.1016/j.psep.2018.01.017.10.1016/j.psep.2018.01.017 Search in Google Scholar

[9] Li, Q., Fan, W., Yan, Ch., and Ye, B., 2007, “Experiment on Kerosene-Fueled PDRE: DDT Enhancement by Shchelkin Spirals and Exhaust Plume,” AIAA 2007-5008. 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, doi: 10.2514/6.2007-5008.10.2514/6.2007-5008 Search in Google Scholar

[10] Ciccarelli G., and Boccio J. L., 1998, “Detonation wave propagation through a single orifice plate in a circular tube”, International Symposium on Combustion, 27(2), pp. 2233-2239, doi: 10.1016/S0082-0784(98)80072-6.10.1016/S0082-0784(98)80072-6 Search in Google Scholar

[11] Knystautas R., Lee J. H., and Guirao C. M., 1982, “The critical tube diameter for detonation failure in hydrocarbon-air mixtures,” Combustion & Flames, 48, pp. 63-83, doi: 10.1016/0010-2180(82)90116-X.10.1016/0010-2180(82)90116-X Search in Google Scholar

[12] Peraldi O., Knystautas R., amd Lee J. H., 1988, “Criteria for transition to detonation in tubes,” Symposium (International) on Combustion, 21(1), pp. 1629-1637, doi: 10.1016/S0082-0784(88)80396-5.10.1016/S0082-0784(88)80396-5 Search in Google Scholar

[13] Zhang B., amd Liu H., 2017, “The effects of large scale perturbation-generating obstacles on the propagation of detonation filled with methane-oxygen mixture,” Combustion & Flame, 182, pp. 279-287, doi: 10.1016/j.combustflame.2017.04.025.10.1016/j.combustflame.2017.04.025 Search in Google Scholar

[14] Sun X., Li Q., and Shouxiang Lu, 2019, “The propagation mechanism of detonation wave in a round tube filled with larger blockage ratio orifice plates”, International Journal of Hydrogen Energy, 11, pp. 7681-7691, doi: 10.1016/j.ijhydene.2019.01.139.10.1016/j.ijhydene.2019.01.139 Search in Google Scholar

[15] Deiterding R., 2003, “Parallel adaptive simulation of multi-dimensional detonation structures;” PhD thesis, Brandenburgische Technische Universität Cottbus. (Accesed on 28/11/2020) http://rdeiterding.website/pub/thesis_us.pdf Search in Google Scholar

[16] Deiterding R., 2009, “A parallel adaptive method for simulating shock-induced combustion with detailed chemical kinetics in complex domains,” Computers & Structures, 87(11-12), June 2009, pp. 769-783, doi:10.1016/j.compstruc.2008.11.007.10.1016/j.compstruc.2008.11.007 Search in Google Scholar

[17] Liang, Z., Browne, S., Deiterding, R., and Shepherd, J., 2007, “Detonation front structure and the competition for radicals,” Proceedings of the Combustion Institute, 31(2), pp. 2445-2453. doi: 10.1016/j.proci.2006.07.244.10.1016/j.proci.2006.07.244 Search in Google Scholar

[18] Mahmoudi Y., Karimi N., Deiterding R., and Emami S., 2014, “Hydrodynamic Instabilities in Gaseous Detonations: Comparison of Euler, Navier-Stokes, and Large-Eddy Simulation,” Journal of Propulsion and Power, 30(2), pp. 384-396, doi: 10.2514/1.B34986.10.2514/1.B34986 Search in Google Scholar

[19] Deiterding R., and Bader G., 2005, “High-resolution simulation of detonations with detailed chemistry,” In: Warnecke G. (editor) Analysis and Numerics for Conservation Laws, pp. 69-91, Springer, Berlin, Heidelberg, doi: 10.1007/3-540-27907-5_4.10.1007/3-540-27907-5_4 Search in Google Scholar

[20] Deiterding, R., 2011, “High-resolution numerical simulation and analysis of Mach reflection structures in detonation waves in low-pressure H2–O2–Ar mixtures: a summary of results obtained with the adaptive mesh refinement framework AMROC,” Journal of Combustion, 2011, Article ID 738969, doi: 10.1155/2011/738969.10.1155/2011/738969 Search in Google Scholar

[21] Deiterding, R., Domingues, M. O., and Schneider, K., 2020, “Multiresolution analysis as a criterion for effective dynamic mesh adaptation – A case study for Euler equations in the SAMR framework AMROC,” Computers & Fluids, 205, 104583, doi: 10.1016/j.compfluid.2020.104583.10.1016/j.compfluid.2020.104583 Search in Google Scholar

[22] Oran, E. S., Weber, J. W., Stefaniw, E. I., Lefebvre, M. H., and Anderson, J. D., 1998, “A Numerical Study of a Two-Dimensional H2-O2-Ar Detonation Using a Detailed Chemical Reaction Model,” Combustion and Flame, 113(1-2), pp. 147-163, doi: 10.1016/S0010-2180(97)00218-6.10.1016/S0010-2180(97)00218-6 Search in Google Scholar

[23] Westbrook CK., 1982, “Chemical kinetics of hydrocarbon oxidation in gaseous detonations,” Combustion & Flame, 46, pp. 191-210, doi: 10.1016/0010-2180(82)90015-3.10.1016/0010-2180(82)90015-3 Search in Google Scholar

[24] Strehlow R.A., 1968, “Gas pase detonations: Recent developments,” Combustion and Flame, 12(2), pp. 81-101, doi:10.1016/0010-2180(68)90083-7.10.1016/0010-2180(68)90083-7 Search in Google Scholar

eISSN:
2545-2835
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Inżynieria, Wstępy i przeglądy, inne, Nauki o Ziemi, Nauka o materiałach, Fizyka