Otwarty dostęp

On the Practical Use of Advanced Constitutive Laws in Finite Element Underground Structures Analysis


Zacytuj

[1] Amrane, M. (2018). Modélisation du Comportement des Ouvrages Géotechniques avec la Loi de J. Lemaitre, PhD thesis, University of Skikda, Algeria. http://ftech.univ-skikda.dz/doc2/2018/THESE%20Amrane%20Moussa.pdf Search in Google Scholar

[2] Amrane, M. & Messast, S. (2018). Modeling the Behavior of Geotechnical Constructions Under Cyclic Loading with a Numerical Approach Based on J. Lemaitre Model. Indian Geotech J. 48, 520–528. https://doi.org/10.1007/s40098-017-0275-1 Search in Google Scholar

[3] Moussa, A., Salah, M. & Rafik, D. (2020). Improvement of a Hypoplastic Model for Granular Materials Under High-Confining Pressures. Geotech Geol Eng. 38, 3761–3771. https://doi.org/10.1007/s10706-020-01256-y Search in Google Scholar

[4] Chatra, A. S. & Dadagoudar, G. R. (2010). Numerical simulation of hypoplastic constitutive model for sand. In Indian Geotechnical Conference – 2010, GEOtrendz December 16–18, 2010 IGS Mumbai Chapter & IIT Bombay Search in Google Scholar

[5] Reyes, D.K., Rodriguez-Marek, A., & Lizcano, A. (2009). A hypoplastic model for site response analysis. Soil Dynamic and Earthquake Engineering. 29 (1), 173-184. Search in Google Scholar

[6] Gudehus, G., Amorosi, A., Gens, A., Herle, I., Kolymbas, D., Masin, D., Muir Wood, D., Nova, R., Niemunis, A., Pastor, M., Tamagnini, C. & G. Viggiani, G. (2008). The soilmodels.info project. International Journal for Numerical and Analytical Methods in Geomechanics. 32 (12),1571-1572, [Letter PDF]. Search in Google Scholar

[7] Said, I., Gennaro, D.V., & Frank, R. (2009). Axisymmetric finite element analysis of pile loading tests. Computers and Geotechnics. 36 (1-2), 6-19. Search in Google Scholar

[8] Zidan, A.F. & Ramadan, O.M.O. (2014). Three Dimensional Numerical Analysis of the Effects of Tunnelling Near Piled Structures. KSCE Journal of Civil Engineering. 19 (4), 917-928. Search in Google Scholar

[9] Mathew, G.V & Lehane, B.M. (2014). Measured and Back Analysed Soil Structure Interaction Effects in a Layered Stratigraphy During Tunnel Boring. Geotech Geol Eng. 32 (4), 873-884. Search in Google Scholar

[10] Bonini, M., Lancellotta, G., & Barla, G. (2013). State of Stress in Tunnel Lining in Squeezing Rock Conditions. Rock Mech Rock Eng. 46, 405–411. Search in Google Scholar

[11] Ng, C.W.W., Sun, H.S., Lei, G.H., Shi, J.W., Mašín, D. (2015). Ability of three different soil constitutive models to predict a tunnel’s response to basement excavation. Revue canadienne de géotechnique. 52 (11), 1637-1648. Search in Google Scholar

[12] Niemunis, A. & Herle, I. (1997). Hypoplastic model for cohesionless soils with elastic strain range. Mechanics of Cohesive-Frictional Material. 2, 279-299. Search in Google Scholar

[13] CUR / COB (1999). Monitoring bij de TweedeHeineneoordtunnel, verslag van eengroootschaligpraktijkonderzoeknaargeboorde tunnels. Final report COB committee K100. CUR / COB, Gouda. Search in Google Scholar

[14] CUR / COB (2000).Toetsingsrichtlijn voor het ontwerp van boortunnelsvoorweg- enrailinfrastructuur. Final report COB committee L500. CUR / COB, Gouda. Search in Google Scholar

[15] Schanz, T., Vermeer, P.A. & Bonnier, P.G. (1999). The hardening soil model: Formulation and verification. Beyond 2000 in Computational Geotechnics. Balkema, Rotterdam, ISBN 90 5809 040 X”. Search in Google Scholar

[16] Brinkgreve, R.B.J. et. al. (2002). Plaxis 2D Version 8. A. A. Balkema Publ., Lisse, Abingdon, Exton (PA), Tokyo. Search in Google Scholar

[17] Janbu, N. (1963). Soil compressibility as determined by oedometer and triaxial tests. European conf on soil mechanics and foundation engineering. Wiesbaden, Germany. 1, 19-25. Search in Google Scholar

[18] Brinkgreve, R.B.J. et. al. (2001). Plaxis 3D Tunnel Version 1. A. A. Balkema Publ., Lisse, Abingdon, Exton (PA), Tokyo. Search in Google Scholar

[19] Marcher, T., Vermeer, P.A. & von Wolffersdorff, P.-A. (2000). Hypoplastic and elastoplastic modeling – a comparison with test Data, Proc. III. Euroconference on Constitutive Modeling of Granular Materials, Horton (Greece), S. 353–374, Springer-Verlag Berlin Heidelberg New York, 2000. Search in Google Scholar

[20] Kolymbas, D. (1985). A generalized hypoelastic constitutive law. Proceeding of International Conference on Soil Mechanics and Foundation Engineeering. A. A. Balkema, Rotterdam; Brookfield Search in Google Scholar

[21] Gudehus, G. (1996). A comprehensive constitutive equation for granular materials. Soils and Foundations. 36 (1), 1-12. Search in Google Scholar

[22] Bauer, E. (1996). Calibration of a comprehensive hypoplastic model for granular materials. Soils and Foundations. 36 (1), 13-26. Search in Google Scholar

[23] Herle, I. (2008). On basic features of constitutive models for geomaterials. Journal of Theoretical and Applied Mechanics. Sofia, 38, Nos 1-2, 61-80. Search in Google Scholar

[24] Bom, L.B.T. & Modaressi-Farahmand-Azavi, A. (2014). Constitutive model for granular materials considering grain breakage in finite deformations. European Journal of Environmental and Civil Engineering. 20, 971-1003. https://doi.org/10.1080/19648189.2014.960101. Search in Google Scholar

[25] Kolymbas, D. (1999). Introduction to hypaplasticity. - Advances in Geotechnical Engineering and Tunnelling. CRC Press, London. Search in Google Scholar

[26] Lanier, J., Caillerie, D., Chambon, R., Viggiani, G., B´esuelle, P. & Desrues, J. (2004). A general formulation of hypoplasticity. International Journal for Numerical and Analytical Methods in Geomechanics. 28, 1461–1478. Search in Google Scholar

[27] Anaraki, K. E. (2008). Hypoplasticity investigated parameter determination and numerical simulation. MS Thesis, Delft University of Technology, Delft. Search in Google Scholar

[28] Masın. D. (2010). Hypoplasticity for practical applications – PhD course. http://web.natur.cuni.cz/uhigug/masin/hypocourse. Search in Google Scholar

[29] Mašín, D. (2015). Hypoplasticity for Practical Applications Part 4: Determination of material parameters course on hypoplasticity Zhejiang University, June 2015. Search in Google Scholar

[30] Engin, H.K. & Jostad, H.P. (2014). On the modelling of grain crushing in hypoplasticity. Numerical Methods in Geotechnical Engineering – Hicks, Brinkgreve & Rohe (Eds), 2014 Taylor & Francis Group, London, 978-1-138-00146-6. Search in Google Scholar

[31] Von Wolffersdorff, P.A. (1996). A hypoplastic relation for granular materials with a predefined limit state surface. Mechanics of Cohesive-Frictional Material. 1, 251-271. Search in Google Scholar

[32] Atkinson, J., Richardson, D., & Stallebrass, S. (1990). Effect of recent stress history on the stiffness of overconsolidated soil. Geotechnique. 40, 531-540. Search in Google Scholar

[33] Puzrin, M. & Burland, J. (1998). Non-linear model of small strain behavior of soils. Geotechnique. 48, 217-233. Search in Google Scholar

[34] Mayer, P.-M. (2000). Verformungen und Spannungsänderungendurch Schlitzwandherstellung und Baugrubenaushub. Veröff. Inst. Boden- u. Felsmechanik, Universität, Fridericiana Karlsruhe 2000, H.151. Search in Google Scholar

[35] Moller, S.C. (2006). Tunnel induced settlements and structural forces in linings. PhD Thesis, Universitat Stuttgart. Search in Google Scholar

[36] Gudehus, G. (2004). Prognosenbei Beobachtungsmethoden, Bautechnik. 81 (1), 1–8. Search in Google Scholar

[37] Bakker, K.J., van Schelt, W. & Plekkenpol, J.W. (1996). Predictions and a monitoring scheme with respect to the boring of the Second Heinenoord Tunnel. In: Geotechnical aspects of underground construction in soft ground, (eds: R.J.Mair and R.N. Taylor). Balkema, Rotterdam. 459-464. Search in Google Scholar

[38] Möller, S.C. & Vermeer, P.A. (2008). On numerical simulation of tunnel installation. Tunnelling and Underground Space Technology. 23, 461–475. Search in Google Scholar

[39] Bakker, K.J. (2000). Soil Retaining Structures; development of models for structural analysis. Dissertation (Delft University of Technology). Balkema, Rotterdam. Search in Google Scholar

[40] Herle, I. & Gudehus, G. (1999). Determination of parameters of a hypoplastic constitutive model from properties of grain assembles. Mechanics of Cohesive Frictional Materials. 4, 461–486. Search in Google Scholar

eISSN:
1338-7278
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Inżynieria, Wstępy i przeglądy, inne