Otwarty dostęp

Assessment of Soil-Structure Interaction in Seismic Bridge Pier Analysis Using Force and Displacement Based Approaches


Zacytuj

[1] M. J. Pristley, R. Park & N. K. Heng.(1979). Influence of foundation compliance on the seismic response of bridge piers. Bulletin of the New Zealand National Society for Earthquake Engineering. Volume 12 ( 1), pp. 22–34.10.5459/bnzsee.12.1.22-34Search in Google Scholar

[2] G. D. E. Carlo, M. Dolce & D. Liberatore. (2000). Influence of soil-structure interaction on the seismic response of bridge piers. In Twelth World Conference of Earthquake Engineering, 30 Jan - 4 Feb, pp. 1–8, Auckland New Zealand, Upper Hutt N Z NZSEE.Search in Google Scholar

[3] B. M. Ciampoli & P. E. Pinto. (1995). Effects of soil-structure interaction on inelastic seismic response of bridge piers. Journal of Structural Engineering ASCE. volume 121 (5), pp. 806–814. doi.org/10.1061/(ASCE)0733-9445(1995)121:5(806)10.1061/(ASCE)0733-9445(1995)121:5(806)Search in Google Scholar

[4] G. Mylonakis, S. Nikolaou, & G. Gazetas.(2006). Footings under seismic loading: Analysis and design issues with emphasis on bridge foundations. Soil Dynamics and Earthquake Engineering. Volume 26 (9), pp. 824–853. doi:10.1016/j.soildyn.2005.12.00510.1016/j.soildyn.2005.12.005Search in Google Scholar

[5] E. Kausel. (2010). Early history of soil – structure interaction. Soil Dynamics and Earthquake Engineering. volume 30 (9), pp. 822–832. doi:10.1016/j.soildyn.2009.11.00110.1016/j.soildyn.2009.11.001Search in Google Scholar

[6] R. J. Apsel & J. E. Luco. (1976). Torsional Response of Rigid Embedded Foundation. Journal of Engineering Mechanics Division ASCE. Volume 102 (6), pp. 957–970.10.1061/JMCEA3.0002193Search in Google Scholar

[7] P. Srinivasulu & C. V. Vaidyanathan. (2007). Handbook of machine foundations. (New Delhi): Tata Mcgraw-Hill company Ltd.Search in Google Scholar

[8] E. Celebi, S. Firat & I. Cankaya. (2006). Evaluation of impedance function in the analysis of foundation vibration using boundary element method, Applied Mathematics and Computation. Volume 173 (1), pp. 636–667. doi:10.1016/j.amc.2005.04.006.10.1016/j.amc.2005.04.006Search in Google Scholar

[9] C. C. Spyrakos.(1990). Assessment of SSI on the longitudinal seismic response of short span bridges. Engineering Structures. Volume 12 (1), pp. 60-66. doi:10.1016/0141-0296(90)90038-T10.1016/0141-0296(90)90038-TSearch in Google Scholar

[10] C. C. Spyrakos.(1992). Seismic behavior of bridge piers including soil-structure interaction. Computers and Structures. Volume 43 (2), pp. 373–384. doi:10.1016/0045-7949(92)90155-S10.1016/0045-7949(92)90155-SSearch in Google Scholar

[11] P. E. Mergos & K. Kawashima.(2005). Rocking isolation of a typical bridge pier on spread foundation. Journal of Earthquake Engineering Volume 9 (2), pp. 395–414. doi: 10.1142/S021945541550043110.1142/S0219455415500431Search in Google Scholar

[12] W. Liu, T. C. Hutchinson, B. L. Kutter, M. Hakhamaneshi, M. A. Aschheim, & S. K. Kunnath. (2013). Demonstration of Compatible Yielding between Soil-Foundation and Superstructure Components. Journal of Structural Engineering ASCE. Volume 139, Special Issue: NEES 2: Advances in Earthquake Engineering pp.1408-1420. doi.org/10.1061/(ASCE)ST.1943-541X.000063710.1061/(ASCE)ST.1943-541X.0000637Search in Google Scholar

[13] H. Ghalibafian, R. O. Foschi, & C. E. Ventura.(2008). Performance-based assessment of the effects of soil-structure interaction on the seismic demands of bridge piers: A proposed methodology. In Fourteenth World Conference on Earthquake Engineering. October 12-17, 2008,. Beijing, China: Chinese Association of Earthquake Engineering.Search in Google Scholar

[14] M. J. . Pristley, G. M. Calvi & M. J. Kowalsky.(2007). .Displacement-Based Seismic Design of Structures. Italy: IUSS Press.Search in Google Scholar

[15] P. Ni, L. Petrini, & R. Paolucci.(2014). Direct displacement-based assessment with nonlinear soil - structure interaction for multi-span reinforced concrete bridges. Structure Infrastructure Engineering : Maintenance, Management, Life-Cycle Desig and Performance. Volume 10 (9), pp. 1211–1227. DOI:10.1080/15732479.2013.80281310.1080/15732479.2013.802813Search in Google Scholar

[16] The Indian Road Congress. (2011). Code of Practice for Concrete Road Bridges. IRC: 112-2011. New Delhi, India.Search in Google Scholar

[17] G. Ranjan & A. S. R. Rao.(2007). Basic and applied soil mechanics. New Delhi: New Age International.Search in Google Scholar

[18] Bureau of Indian standard. (2004). Code of practice for determination of bearing capacity of shallow foundation. IS: 6403-1981. New Delhi, India.Search in Google Scholar

[19] R. F. Scott.(1981). Foundation Analysis. Inc. Englewood Cliff NJ: Prentice-Hall International series in Civil Engineering.Search in Google Scholar

[20] Bureau of Indian standard. (1981). Code of practice for design and construction of Raft Foundations. IS: 2950 (Part 1). New Delhi, India.Search in Google Scholar

[21] Bureau of Indian Standards. (2002). Criteria for Earthquake Resistant Design of Structures, General Provisions and buildings. IS: 1893 Part1. New Delhi, India.Search in Google Scholar

[22] Applied Technology Courncil. (1996). Seismic evaluation and retrofit of concrete buildings. Volume I ATC 40. California.Search in Google Scholar

[23] SAP2000. Structural Analysis Programme 10.0.5. Computers and Structures Inc. Berkeley CA www.csiberkeley.com.Search in Google Scholar

eISSN:
1338-7278
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other