Zacytuj

1. Becher UM, Endtmann C, Tiyerili V, Nickenig G, Werner N. Endothelial Damage and Regeneration: The Role of the Renin-Angiotensin-Aldosterone System. Current Hypertension Reports. 2011;13(1):86-92.10.1007/s11906-010-0171-x21108024 Search in Google Scholar

2. Silva GM, França-Falcão MS, Calzerra NTM, Luz MS, Gadelha DDA, Balarini CM, et al. Role of Renin- Angiotensin System Components in Atherosclerosis: Focus on Ang-II, ACE2, and Ang-1-7. Frontiers in physiology. 2020;11:1067.10.3389/fphys.2020.01067749497033013457 Search in Google Scholar

3. Lüscher TF. Endothelial dysfunction: the role and impact of the renin-angiotensin system. Heart. 2000;84(suppl 1):i20.10.1136/heart.84.suppl_1.i20176653510956315 Search in Google Scholar

4. Ruiz-Ortega M, Lorenzo O, Rupérez M, Esteban V, Suzuki Y, Mezzano S, et al. Role of the Renin- Angiotensin System in Vascular Diseases. Hypertension (Dallas, Tex : 1979). 2001;38(6):1382-7.10.1161/hy1201.10058911751722 Search in Google Scholar

5. Rena G, Lang CC. Repurposing Metformin for Cardiovascular Disease. Circulation. 2018;137(5):422-4.10.1161/CIRCULATIONAHA.117.03173529378754 Search in Google Scholar

6. Manzella D, Grella R, Esposito K, Giugliano D, Barbagallo M, Paolisso G. Blood pressure and cardiac autonomic nervous system in obese type 2 diabetic patients: effect of metformin administration. Am J Hypertens. 2004;17(3):223-7.10.1016/j.amjhyper.2003.11.00615001195 Search in Google Scholar

7. de Jager J, Kooy A, Schalkwijk C, van der Kolk J, Lehert P, Bets D, et al. Long-term effects of metformin on endothelial function in type 2 diabetes: a randomized controlled trial. J Intern Med. 2014;275(1):59-70.10.1111/joim.1212823981104 Search in Google Scholar

8. Wulffele MG, Kooy A, Lehert P, Bets D, Donker AJ, Stehouwer CD. Does metformin decrease blood pressure in patients with Type 2 diabetes intensively treated with insulin? Diabet Med. 2005;22(7):907-13.10.1111/j.1464-5491.2005.01554.x15975107 Search in Google Scholar

9. de Aguiar LG, Bahia LR, Villela N, Laflor C, Sicuro F, Wiernsperger N, et al. Metformin improves endothelial vascular reactivity in first-degree relatives of type 2 diabetic patients with metabolic syndrome and normal glucose tolerance. Diabetes care. 2006;29(5):1083-9.10.2337/dc05-2146 Search in Google Scholar

10. Ionică LN, Gaiță L, Bînă AM, Soșdean R, Lighezan R, Sima A, et al. Metformin alleviates monoamine oxidaserelated vascular oxidative stress and endothelial dysfunction in rats with diet-induced obesity. Mol Cell Biochem. 2021;476(11):4019-29.10.1007/s11010-021-04194-234216348 Search in Google Scholar

11. Liu J, Aylor KW, Chai W, Barrett EJ, Liu Z. Metformin prevents endothelial oxidative stress and microvascular insulin resistance during obesity development in male rats. American Journal of Physiology-Endocrinology and Metabolism. 2022;322(3):E293-E306.10.1152/ajpendo.00240.2021889700335128961 Search in Google Scholar

12. Ding Y, Zhou Y, Ling P, Feng X, Luo S, Zheng X, et al. Metformin in cardiovascular diabetology: a focused review of its impact on endothelial function. Theranostics. 2021;11(19):9376-96.10.7150/thno.64706849050234646376 Search in Google Scholar

13. Cameron AR, Morrison VL, Levin D, Mohan M, Forteath C, Beall C, et al. Anti-Inflammatory Effects of Metformin Irrespective of Diabetes Status. Circulation research. 2016;119(5):652-65.10.1161/CIRCRESAHA.116.308445499045927418629 Search in Google Scholar

14. Bai B, Chen H. Metformin: A Novel Weapon Against Inflammation. Front Pharmacol. 2021;12:622262.10.3389/fphar.2021.622262788016133584319 Search in Google Scholar

15. LaMoia TE, Shulman GI. Cellular and Molecular Mechanisms of Metformin Action. Endocrine reviews. 2020.10.1210/endrev/bnaa023784608632897388 Search in Google Scholar

16. Danila MD, Privistirescu A, Duicu OM, Ratiu CD, Angoulvant D, Muntean DM, et al. The effect of purinergic signaling via the P2Y11 receptor on vascular function in a rat model of acute inflammation. Molecular and cellular biochemistry. 2017.10.1007/s11010-017-2973-528213772 Search in Google Scholar

17. Duicu OM, Lighezan R, Sturza A, Balica R, Vaduva A, Feier H, et al. Assessment of Mitochondrial Dysfunction and Monoamine Oxidase Contribution to Oxidative Stress in Human Diabetic Hearts. Oxidative medicine and cellular longevity. 2016;2016:8470394.10.1155/2016/8470394484677027190576 Search in Google Scholar

18. Sturza A, Leisegang MS, Babelova A, Schröder K, Benkhoff S, Loot AE, et al. Monoamine oxidases are mediators of endothelial dysfunction in the mouse aorta. Hypertension. 2013;62(1):140-6.10.1161/HYPERTENSIONAHA.113.0131423670301 Search in Google Scholar

19. Schubert M, Hansen S, Leefmann J, Guan K. Repurposing Antidiabetic Drugs for Cardiovascular Disease. Front Physiol. 2020;11:568632.10.3389/fphys.2020.568632752255333041865 Search in Google Scholar

20. Ala M, Ala M. Metformin for Cardiovascular Protection, Inflammatory Bowel Disease, Osteoporosis, Periodontitis, Polycystic Ovarian Syndrome, Neurodegeneration, Cancer, Inflammation and Senescence: What Is Next? ACS Pharmacology & Translational Science. 2021;4(6):1747-70.10.1021/acsptsci.1c00167866970934927008 Search in Google Scholar

21. Giaccari A, Solini A, Frontoni S, Del Prato S. Metformin Benefits: Another Example for Alternative Energy Substrate Mechanism? Diabetes Care. 2021;44(3): 647-54.10.2337/dc20-1964789624933608326 Search in Google Scholar

22. Katakam PV, Ujhelyi MR, Hoenig M, Miller AW. Metformin improves vascular function in insulinresistant rats. Hypertension (Dallas, Tex:1979). 2000; 35(1 Pt 1):108-12.10.1161/01.HYP.35.1.108 Search in Google Scholar

23. Davis BJ, Xie Z, Viollet B, Zou MH. Activation of the AMP-activated kinase by antidiabetes drug metformin stimulates nitric oxide synthesis in vivo by promoting the association of heat shock protein 90 and endothelial nitric oxide synthase. Diabetes. 2006;55(2):496-505.10.2337/diabetes.55.02.06.db05-106416443786 Search in Google Scholar

24. Gundewar S, Calvert JW, Jha S, Toedt-Pingel I, Ji SY, Nunez D, et al. Activation of AMP-activated protein kinase by metformin improves left ventricular function and survival in heart failure. Circ Res. 2009;104(3):403-11.10.1161/CIRCRESAHA.108.190918270976119096023 Search in Google Scholar

25. Yu JW, Deng YP, Han X, Ren GF, Cai J, Jiang GJ. Metformin improves the angiogenic functions of endothelial progenitor cells via activating AMPK/eNOS pathway in diabetic mice. Cardiovascular diabetology. 2016;15:88.10.1186/s12933-016-0408-3491282427316923 Search in Google Scholar

26. Davis BJ, Xie Z, Viollet B, Zou M-H. Activation of the AMP-Activated Kinase by Antidiabetes Drug Metformin Stimulates Nitric Oxide Synthesis In Vivo by Promoting the Association of Heat Shock Protein 90 and Endothelial Nitric Oxide Synthase. Diabetes. 2006;55(2):496-505.10.2337/diabetes.55.02.06.db05-1064 Search in Google Scholar

27. Sartoretto JL, Melo GA, Carvalho MH, Nigro D, Passaglia RT, Scavone C, et al. Metformin treatment restores the altered microvascular reactivity in neonatal streptozotocin-induced diabetic rats increasing NOS activity, but not NOS expression. Life sciences. 2005;77(21):2676-89.10.1016/j.lfs.2005.05.02215964597 Search in Google Scholar

28. Kim SA, Choi HC. Metformin inhibits inflammatory response via AMPK-PTEN pathway in vascular smooth muscle cells. Biochem Biophys Res Commun. 2012;425(4):866-72.10.1016/j.bbrc.2012.07.16522898050 Search in Google Scholar

29. Dawood AF, Maarouf A, Alzamil NM, Momenah MA, Shati AA, Bayoumy NM, et al. Metformin Is Associated with the Inhibition of Renal Artery AT1R/ET-1/iNOS Axis in a Rat Model of Diabetic Nephropathy with Suppression of Inflammation and Oxidative Stress and Kidney Injury. Biomedicines. 2022;10(7).10.3390/biomedicines10071644931315035884947 Search in Google Scholar

30. Matsumoto T, Noguchi E, Ishida K, Kobayashi T, Yamada N, Kamata K. Metformin normalizes endothelial function by suppressing vasoconstrictor prostanoids in mesenteric arteries from OLETF rats, a model of type 2 diabetes. Am J Physiol Heart Circ Physiol. 2008;295(3):H1165-h76.10.1152/ajpheart.00486.200818641273 Search in Google Scholar

31. Merce AP, Ionică LN, Bînă AM, Popescu S, Lighezan R, Petrescu L, et al. Monoamine oxidase is a source of cardiac oxidative stress in obese rats: the beneficial role of metformin. Molecular and cellular biochemistry. 2022.10.1007/s11010-022-04490-535723772 Search in Google Scholar

32. Jadhav S, Ferrell W, Greer IA, Petrie JR, Cobbe SM, Sattar N. Effects of metformin on microvascular function and exercise tolerance in women with angina and normal coronary arteries: a randomized, doubleblind, placebo-controlled study. J Am Coll Cardiol. 2006;48(5):956-63.10.1016/j.jacc.2006.04.08816949486 Search in Google Scholar

33. Meaney E, Vela A, Samaniego V, Meaney A, Asbún J, Zempoalteca JC, et al. Metformin, arterial function, intima-media thickness and nitroxidation in metabolic syndrome: the mefisto study. Clin Exp Pharmacol Physiol. 2008;35(8):895-903.10.1111/j.1440-1681.2008.04920.x18346173 Search in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Medicine, Clinical Medicine, other