Otwarty dostęp

The Role of Galectin 3 in the Pathogenesis of Diabetes Mellitus: Focus on Β-Cell Function and Survival


Zacytuj

1. Johannes L, Jacob R, Leffler H. Galectins at a glance. J Cell Sci. 2018; 131(9):jcs208884.10.1242/jcs.208884 Search in Google Scholar

2. Hirabayashi J, Kasai K-i. The family of metazoan metalindependent β-galactoside-binding lectins: structure, function and molecular evolution. Glycobiology. 1993;3:297-304.10.1093/glycob/3.4.297 Search in Google Scholar

3. Birdsall B, Feeney J, Burdett ID, Bawumia S, Barboni EA, Hughes RC. NMR solution studies of hamster galectin- 3 and electron microscopic visualization of surface-adsorbed complexes: evidence for interactions between the N-and C-terminal domains. Biochemistry. 2001;40:4859-66.10.1021/bi002907f Search in Google Scholar

4. Hughes RC. Mac-2: a versatile galactose-binding protein of mammalian tissues. Glycobiology. 1994;4:5-12.10.1093/glycob/4.1.5 Search in Google Scholar

5. Wang JL, Laing JG, Anderson RL. Lectins in the cell nucleus. Glycobiology. 1991;1:243-52.10.1093/glycob/1.3.243 Search in Google Scholar

6. Huflejt M, Turck C, Lindstedt R, Barondes S, Leffler H. L-29, a soluble lactose-binding lectin, is phosphorylated on serine 6 and serine 12 in vivo and by casein kinase I. Journal of Biological Chemistry. 1993;268:26712-8.10.1016/S0021-9258(19)74371-3 Search in Google Scholar

7. Mazurek N, Conklin J, Byrd JC, Raz A, Bresalier RS. Phosphorylation of the β-galactoside-binding protein galectin- 3 modulates binding to its ligands. Journal of Biological Chemistry. 2000;275:36311-5.10.1074/jbc.M003831200 Search in Google Scholar

8. Menon RP, Hughes RC. Determinants in the N-terminal domains of galectin-3 for secretion by a novel pathway circumventing the endoplasmic reticulum–Golgi complex. European journal of biochemistry. 1999;264: 569-76.10.1046/j.1432-1327.1999.00671.x Search in Google Scholar

9. Hirabayashi J, Hashidate T, Arata Y, Nishi N, Nakamura T, Hirashima M, et al. Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochimica et Biophysica Acta (BBA)-General Subjects. 2002;1572:232-5410.1016/S0304-4165(02)00311-2 Search in Google Scholar

10. Collins PM, Bum-Erdene K, Yu X, Blanchard H. Galectin- 3 interactions with glycosphingolipids. J Mol Biol. 2014; 426(7):1439-5110.1016/j.jmb.2013.12.00424326249 Search in Google Scholar

11. Dumic J, Dabelic S, Flögel M. Galectin-3: an openended story. Biochimica et Biophysica Acta (BBA)- General Subjects. 2006;1760:616-35.10.1016/j.bbagen.2005.12.020 Search in Google Scholar

12. Díaz-Alvarez L, Ortega E. The Many Roles of Galectin- 3, a Multifaceted Molecule, in Innate Immune Responses against Pathogens. Mediators Inflamm. 2017; 2017:924757410.1155/2017/9247574 Search in Google Scholar

13. Chung AW, Sieling PA, Schenk M, Teles RM, Krutzik SR, Hsu DK, Liu FT, Sarno EN, Rea TH, Stenger S, Modlin RL, Lee DJ. Galectin-3 regulates the innate immune response of human monocytes. J Infect Dis. 2013; 207(6):947-5610.1093/infdis/jis920 Search in Google Scholar

14. Yang RY, Hsu DK, Liu FT. Expression of galectin-3 modulates T-cell growth and apoptosis. Proc Natl Acad Sci U S A. 1996; 93(13):6737-42. doi: 10.1073/pnas.93.13.6737 Open DOISearch in Google Scholar

15. Hughes RC. Secretion of the galectin family of mammalian carbohydrate-binding proteins. Biochimica et Biophysica Acta (BBA)-General Subjects. 1999;1473: 172-85.10.1016/S0304-4165(99)00177-4 Search in Google Scholar

16. Schaffert C, Pour PM, Chaney WG. Localization of galectin- 3 in normal and diseased pancreatic tissue. International journal of pancreatology. 1998; 23: 1-9.10.1007/BF027874979520085 Search in Google Scholar

17. Thomas HE, McKenzie MD, Angstetra E, Campbell PD, Kay TW. Beta cell apoptosis in diabetes. Apoptosis. 2009; 14(12):1389-404.10.1007/s10495-009-0339-519322660 Search in Google Scholar

18. Hui H, Dotta F, Di Mario U, Perfetti R. Role of caspases in the regulation of apoptotic pancreatic islet beta-cells death. J Cell Physiol. 2004; 200(2):177-200.10.1002/jcp.2002115174089 Search in Google Scholar

19. Wali JA, Masters SL, Thomas HE. Linking metabolic abnormalities to apoptotic pathways in Beta cells in type 2 diabetes. Cells. 2013; 2(2):266-83.10.3390/cells2020266397267924709700 Search in Google Scholar

20. Goldberg RB. Lipid disorders in diabetes. Diabetes care. 1981; 4: 561-572.10.2337/diacare.4.5.5616751732 Search in Google Scholar

21. Abbate SL, Brunzell JD. Pathophysiology of hyperlipidemia in diabetes mellitus. J Cardiovasc Pharmacol. 1990;16 Suppl 9:S1-7.10.1097/00005344-199000169-00002 Search in Google Scholar

22. Hirano T. Pathophysiology of Diabetic Dyslipidemia. J Atheroscler Thromb. 2018; 25(9):771-782.10.5551/jat.RV17023614377529998913 Search in Google Scholar

23. Nielsen TS, Jessen N, Jørgensen JO, Møller N, Lund S. Dissecting adipose tissue lipolysis: molecular regulation and implications for metabolic disease. J Mol Endocrinol. 2014; 52(3):R199-222.10.1530/JME-13-027724577718 Search in Google Scholar

24. Santoro A, McGraw TE, Kahn BB. Insulin action in adipocytes, adipose remodeling, and systemic effects. Cell Metab. 2021; 33(4):748-757.10.1016/j.cmet.2021.03.019807816733826917 Search in Google Scholar

25. Bjornstad P, Eckel RH. Pathogenesis of Lipid Disorders in Insulin Resistance: a Brief Review. Curr Diab Rep. 2018; 18(12):127.10.1007/s11892-018-1101-6642820730328521 Search in Google Scholar

26. Goldberg RB. Lipid disorders in diabetes. Diabetes Care. 1981; 4(5):561-72.10.2337/diacare.4.5.5616751732 Search in Google Scholar

27. Kawasaki E. Type 1 diabetes and autoimmunity. Clinical pediatric endocrinology. 2014; 23: 99-10510.1297/cpe.23.99421993725374439 Search in Google Scholar

28. Chen J, Stimpson SE, Fernandez-Bueno GA, Mathews CE. Mitochondrial reactive oxygen species and type 1 diabetes. Antioxidants & redox signaling. 2018; 29(14): 1361-72.10.1089/ars.2017.7346616668929295631 Search in Google Scholar

29. Paschou SA, Papadopoulou-Marketou N, Chrousos GP, Kanaka-Gantenbein C. On type 1 diabetes mellitus pathogenesis. Endocrine connections. 2018; 7(1):R38-46.10.1530/EC-17-0347577666529191919 Search in Google Scholar

30. Karlsen AE, Størling ZM, Sparre T, Larsen MR, Mahmood A, Størling J, et al. Immune-mediated β-cell destruction in vitro and in vivo—A pivotal role for galectin- 3. Biochemical and biophysical research communications. 2006; 344(1):406-15.10.1016/j.bbrc.2006.03.10516600178 Search in Google Scholar

31. Saksida T, Nikolic I, Vujicic M, Nilsson UJ, Leffler H, Lukic ML et al. Galectin-3 deficiency protects pancreatic islet cells from cytokine-triggered apoptosis in vitro. Journal of cellular physiology. 2013; 228(7):1568-76.10.1002/jcp.2431823280610 Search in Google Scholar

32. Mensah-Brown EP, Al Rabesi Z, Shahin A, Al Shamsi M, Arsenijevic N, Hsu DK. Targeted disruption of the galectin-3 gene results in decreased susceptibility to multiple low dose streptozotocin-induced diabetes in mice. Clinical Immunology. 2009; 130(1):83-8.10.1016/j.clim.2008.08.02418845486 Search in Google Scholar

33. Jovicic N, Petrovic I, Pejnovic N, Ljujic B, Miletic Kovacevic M et al. Transgenic Overexpression of Galectin- 3 in Pancreatic β Cells Attenuates Hyperglycemia in Mice: Synergistic Antidiabetic Effect With Exogenous IL-33. Frontiers in Pharmacology. 2021;12(2799).10.3389/fphar.2021.714683860283734803672 Search in Google Scholar

34. Radosavljevic G, Volarevic V, Jovanovic I, Milovanovic M, Pejnovic N, Arsenijevic N et al. The roles of Galectin- 3 in autoimmunity and tumor progression. Immunol Res. 2012; 52(1-2):100-1010.1007/s12026-012-8286-622418727 Search in Google Scholar

35. Sano H, Hsu DK, Apgar JR, Yu L, Sharma BB, Kuwabara I et al. Critical role of galectin-3 in phagocytosis by macrophages. The Journal of clinical investigation. 2003; 112(3):389-97.10.1172/JCI200317592 Search in Google Scholar

36. Radosavljevic GD, Pantic J, Jovanovic I, Lukic ML, Arsenijevic N. The two faces of galectin-3: roles in various pathological conditions. Serbian Journal of Experimental and Clinical Research. 2016; 17(3):187-98.).10.1515/sjecr-2016-0011 Search in Google Scholar

37. DeFronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH, Holst JJ et al. Type 2 diabetes mellitus. Nature reviews Disease primers. 2015 Jul; 1(1):1-22.10.1038/nrdp.2015.1927189025 Search in Google Scholar

38. Li P, Liu S, Lu M, Bandyopadhyay G, Oh D, Imamura T et al. Hematopoietic-derived galectin-3 causes cellular and systemic insulin resistance. Cell. 2016; 167(4):973-84.10.1016/j.cell.2016.10.025517932927814523 Search in Google Scholar

39. Pejnovic NN, Pantic JM, Jovanovic IP, Radosavljevic GD, Milovanovic MZ, Nikolic IG et al. Galectin-3 deficiency accelerates high-fat diet–induced obesity and amplifies inflammation in adipose tissue and pancreatic islets. Diabetes. 2013; 62(6):1932-44.10.2337/db12-0222366161123349493 Search in Google Scholar

40. Yuan Y, Zhou J, Hu R, Zou L, Ji L, Jiang G. Piperine protects against pancreatic β-cell dysfunction by alleviating macrophage inflammation in obese mice. Life Sciences. 2021; 274:11931210.1016/j.lfs.2021.11931233667521 Search in Google Scholar

41. Weigert J, Neumeier M, Wanninger J, Bauer S, Farkas S, Scherer MN et al. Serum galectin-3 is elevated in obesity and negatively correlates with glycosylated hemoglobin in type 2 diabetes. The Journal of Clinical Endocrinology & Metabolism. 2010; 95(3):1404-11.10.1210/jc.2009-161920080851 Search in Google Scholar

42. Yilmaz H, Cakmak M, Inan O, Darcin T, Akcay A. Increased levels of galectin-3 were associated with prediabetes and diabetes: new risk factor? Journal of endocrinological investigation. 2015;38: 527-33 Search in Google Scholar

43. Jin Q-h, Lou Y-f, LI T-l, Chen H-h, Qiang L, HE X-j. Serum galectin-3: a risk factor for vascular complications in type 2 diabetes mellitus. Chinese medical journal. 2013;12: 2109-15. Search in Google Scholar

44. Ohkura T, Fujioka Y, Nakanishi R, Shiochi H, Sumi K, Yamamoto N, et al. Low serum galectin-3 concentrations are associated with insulin resistance in patients with type 2 diabetes mellitus. Diabetology & metabolic syndrome. 2014;6: 106.10.1186/1758-5996-6-106419047425302080 Search in Google Scholar

45. Zatterale F, Longo M, Naderi J, Raciti GA, Desiderio A, Miele C et al. Chronic adipose tissue inflammation linking obesity to insulin resistance and type 2 diabetes. Frontiers in physiology. 2020; 10:1607.10.3389/fphys.2019.01607700065732063863 Search in Google Scholar

46. Pejnovic NN, Pantic JM, Jovanovic IP, Radosavljevic GD, Djukic AL, Arsenijevic NN et al. Galectin-3 is a regulator of metaflammation in adipose tissue and pancreatic islets. Adipocyte. 2013; 2(4):266-71.10.4161/adip.24881377470424052904 Search in Google Scholar

47. Petrovic I, Pejnovic N, Ljujic B, Pavlovic S, Miletic Kovacevic M, Jeftic I et al. Overexpression of galectin 3 in pancreatic β cells amplifies β-Cell apoptosis and islet inflammation in Type-2 diabetes in mice. Frontiers in endocrinology. 2020;11:30.10.3389/fendo.2020.00030701870932117058 Search in Google Scholar

48. Böni-Schnetzler M, Meier DT. Islet inflammation in type 2 diabetes. InSeminars in immunopathology 2019 Jul (Vol. 41, No. 4, pp. 501-513). Springer Berlin Heidelberg.10.1007/s00281-019-00745-4659296630989320 Search in Google Scholar

49. Burguillos MA, Svensson M, Schulte T, Boza-Serrano A, Garcia-Quintanilla A, Kavanagh E et al. Microgliasecreted galectin-3 acts as a toll-like receptor 4 ligand and contributes to microglial activation. Cell reports. 2015; 10(9):1626-38.10.1016/j.celrep.2015.02.01225753426 Search in Google Scholar

50. Caberoy NB, Alvarado G, Bigcas JL, Li W. Galectin-3 is a new MerTK-specific eat-me signal. J Cell Physiol. 2012; 227(2):401-7.10.1002/jcp.22955322560521792939 Search in Google Scholar

51. Cucak H, Grunnet LG, Rosendahl A. Accumulation of M1-like macrophages in type 2 diabetic islets is followed by a systemic shift in macrophage polarization. J Leukoc Biol. 2014; 95(1):149-60.10.1189/jlb.021307524009176 Search in Google Scholar

52. Hu S, Kuwabara R, Beukema M, Ferrari M, de Haan BJ, Walvoort MT et al. Low methyl-esterified pectin protects pancreatic β-cells against diabetes-induced oxidative and inflammatory stress via galectin-3. Carbohydrate Polymers. 2020; 249:116863.10.1016/j.carbpol.2020.11686332933690 Search in Google Scholar

53. Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nature reviews immunology. 2011; 11(2):85-97.10.1038/nri2921 Search in Google Scholar

54. Maechler P, Wollheim CB. Mitochondrial function in normal and diabetic β-cells. Nature. 2001; 414: 807-812.10.1038/414807a Search in Google Scholar

55. Wiederkehr A, Wollheim CB. Impact of mitochondrial calcium on the coupling of metabolism to insulin secretion in the pancreatic β-cell. Cell calcium. 2008; 44: 64-76.10.1016/j.ceca.2007.11.004 Search in Google Scholar

56. Chen J, Stimpson SE, Fernandez-Bueno GA, Mathews CE. Mitochondrial reactive oxygen species and type 1 diabetes. Antioxidants & redox signaling. 2018; 29(14):1361-72.10.1089/ars.2017.7346 Search in Google Scholar

57. Panigrahy SK, Bhatt R, Kumar A. Reactive oxygen species: sources, consequences and targeted therapy in type 2 diabetes. Journal of drug targeting. 2017; 25: 93-101.10.1080/1061186X.2016.1207650 Search in Google Scholar

58. Tajeddine N. How do reactive oxygen species and calcium trigger mitochondrial membrane permeabilisation? Biochimica et Biophysica Acta (BBA)-General Subjects. 2016; 1860: 1079-1088. Search in Google Scholar

59. Iacobini C, Menini S, Oddi G, Ricci C, Amadio L, Pricci F, et al. Galectin-3/AGE-receptor 3 knockout mice show accelerated AGE-induced glomerular injury: evidence for a protective role of galectin-3 as an AGE receptor. The FASEB journal. 2004; 18: 1773-5.10.1096/fj.04-2031fje Search in Google Scholar

60. Pugliese G, Pricci F, Iacobini C, Leto G, Amadio L, Barsotti P, et al. Accelerated diabetic glomerulopathy in galectin- 3/AGE receptor 3 knockout mice. The FASEB Journal. 2001; 15: 2471-9.10.1096/fj.01-0006com Search in Google Scholar

61. D’Hertog W, Maris M, Ferreira GB, Verdrengh E, Lage K, Hansen DA et al. Novel insights into the global proteome responses of insulin-producing INS-1E cells to different degrees of endoplasmic reticulum stress. Journal of proteome research. 2010; 9(10):5142-52.10.1021/pr1004086 Search in Google Scholar

62. Berridge MJ. The endoplasmic reticulum: a multifunctional signaling organelle. Cell Calcium 2002;32(5–6):235–249.10.1016/S0143416002001823 Search in Google Scholar

63. Worley 3rd JF, McIntyre MS, Spencer B, Mertz RJ, Roe MW, Dukes ID. Endoplasmic reticulum calcium store regulates membrane potential in mouse islet beta-cells. Journal of Biological Chemistry. 1994;269(20):14359-62.10.1016/S0021-9258(17)36628-0 Search in Google Scholar

64. Zeeshan HM, Lee GH, Kim HR, Chae HJ. Endoplasmic reticulum stress and associated ROS. International journal of molecular sciences. 2016; 17(3):327.10.3390/ijms17030327481318926950115 Search in Google Scholar

65. Bhandary B, Marahatta A, Kim HR, Chae HJ. An involvement of oxidative stress in endoplasmic reticulum stress and its associated diseases. International journal of molecular sciences. 2013; 14(1):434-56.10.3390/ijms14010434356527323263672 Search in Google Scholar

66. Sabatini PV, Speckmann T, Lynn FC. Friend and foe: β- cell Ca2+ signaling and the development of diabetes. Mol Metab. 2019; 21:1-12.10.1016/j.molmet.2018.12.007640736830630689 Search in Google Scholar

67. Rocha M, Diaz-Morales N, Rovira-Llopis S, Escribano- Lopez I, Bañuls C, Hernandez-Mijares A et al. Mitochondrial dysfunction and endoplasmic reticulum stress in diabetes. Current Pharmaceutical Design. 2016; 22(18):2640-9.10.2174/138161282266616020915203326861650 Search in Google Scholar

68. Hasnain SZ, Prins JB, McGuckin MA. Oxidative and endoplasmic reticulum stress in b-cell dysfunction in diabetes. J Mol Endocrinol. 2016; 56(2):33-54.10.1530/JME-15-023226576641 Search in Google Scholar

69. Lee JW, Kim WH, Yeo J, Jung MH. ER stress is implicated in mitochondrial dysfunction-induced apoptosis of pancreatic beta cells. Molecules and cells. 2010; 30(6):545-9.10.1007/s10059-010-0161-521340672 Search in Google Scholar

70. Weinberg JM. Lipotoxicity. Kidney international. 2006 Nov 1;70(9):1560-6.10.1038/sj.ki.500183416955100 Search in Google Scholar

71. Oh YS, Bae GD, Baek DJ, Park EY, Jun HS. Fatty acidinduced lipotoxicity in pancreatic beta-cells during development of type 2 diabetes. Frontiers in endocrinology. 2018; 9:384.10.3389/fendo.2018.00384605496830061862 Search in Google Scholar

72. Yazıcı D, Sezer H. Insulin Resistance, Obesity and Lipotoxicity. Adv Exp Med Biol. 2017;960:277-304.10.1007/978-3-319-48382-5_1228585204 Search in Google Scholar

73. Engin AB. What Is Lipotoxicity? Adv Exp Med Biol. 2017; 960:197-220. Search in Google Scholar

74. Suganami T, Tanaka M, Ogawa Y. Adipose tissue inflammation and ectopic lipid accumulation. Endocrine journal. 2012:EJ12-0271.10.1507/endocrj.EJ12-0271 Search in Google Scholar

75. Pugliese G, Iacobini C, Ricci C, Fantauzzi CB, Menini S. Galectin-3 in diabetic patients. Clinical Chemistry and Laboratory Medicine (CCLM). 2014; 52: 1413-23.10.1515/cclm-2014-018724940712 Search in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Medicine, Clinical Medicine, other