Zacytuj

1. Chen L, Shi G, Huang D, Li Y, Ma C, Shi M, Su B, et al. Male sexual dysfunction: A review of literature on its pathological mechanisms, potential risk factors, and herbal drug intervention. Biomed & Pharmacother 2019; 112: Article no 108585 https://doi.org/10.1016/j.biopha.2019.01.046.10.1016/j.biopha.2019.01.04630798136 Search in Google Scholar

2. Shindel AW, Mwamukonda KB, Lue TF. The future is today: emerging drugs for the treatment of erectile dysfunction. Expert Opin Emerg Drugs 2010; 15(3):467-480. DOI: 10.1517/14728214.2010.480973.10.1517/14728214.2010.480973316361220415601 Search in Google Scholar

3. Hui J, He S, Liu R, Qinyu Z, Haibo Z, Anyang W. Trends in erectile dysfunction research from 2008 to 2018: a bibliometric analysis. Int J Impot Res 2019. doi:10.1038/s41443-019-0161-8.10.1038/s41443-019-0161-8735820431235897 Search in Google Scholar

4. Jackson G. Erectile dysfunction and cardiovascular disease. Cardiovasc J S Afr 2013; 11 (3): 212-216. doi: 10.1016/j.aju.2013.03.003.10.1016/j.aju.2013.03.003444298026558084 Search in Google Scholar

5. Coutinho, P. Metabolic syndrome and erectile dysfunction: assessing the clinical and hemodynamic parameters. Rev Int Androl 2013; 11 (2):60-65. Search in Google Scholar

6. Kessler A, Sollie S, Challacombe B, Briggs K, Van Hemelrijck M. The global prevalence of erectile dysfunction: a review. BJU Inter 2019; 124 (4):https://doi.org/10.1111/bju.14813.10.1111/bju.1481331267639 Search in Google Scholar

7. Kapoor R, Kapoor A. Erectile dysfunction: A present day coronary disease risk equivalent. Indian J Med Res 2016;144:307-10. DOI: 10.4103/0971-5916.198669.10.4103/0971-5916.198669532083328139526 Search in Google Scholar

8. 8.Li J, Peng L, Cao D, He L, Li Y, Wei Q. Avanafil for the Treatment of men With Erectile Dysfunction: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Am J Mens Health 2019; 13 (5): 1-11. https://doi.org/10.1177/155798831988076410.1177/1557988319880764682693231672076 Search in Google Scholar

9. 9.Neelima VC, Edelman SV. Diabetes and Erectile Dysfunction. Clin diabetes 2001; 19(1):45-47. DOI: 10.1007/s11892-002-0059-5.10.1007/s11892-002-0059-512643124 Search in Google Scholar

10. Hatzimouratidis K, Amar E, Eardley I, Giuliano F, Hatzichristou D, Montorsi F, et al. Guidelines on male sexual dysfunction: Erectile dysfunction and premature ejaculation. Eur Urol 2010; 57:804–814. doi: 10.1016/j.eururo.2010.02.020.10.1016/j.eururo.2010.02.02020189712 Search in Google Scholar

11. Kubin M, Wagner G, Fugl-Meyer AR. Epidemiology of erectile dysfunction. Int J Impot Res 2003; 15(1):63-71. DOI: 10.1038/sj.ijir.3900949.10.1038/sj.ijir.390094912605242 Search in Google Scholar

12. Bovijn J, Jackson L, Censin J, Chen C-Y, Laisk T, Laber S, et al. GWAS Identifies Risk Locus for Erectile Dysfunction and Implicates Hypothalamic Neurobiology and Diabetes in Etiology. AJHG 2019; 104 (1): 157-163. https://doi.org/10.1016/j.ajhg.2018.11.004.10.1016/j.ajhg.2018.11.004632362530583798 Search in Google Scholar

13. Ramachandrappa S, Raimondo A, Cali AMG, Keogh JM, Henning E, Saeed S, et al. Rare variants in singleminded 1 (SIM1) are associated with severe obesity. J Clin Invest 2013; 123(7):3042-3050. https://doi.org/10.1172/JCI68016.10.1172/JCI68016369655823778139 Search in Google Scholar

14. Seeley RJ, Yagaloff KA, Fisher SL, Burn P, Thiele TE, van Dijk G, et al.Melanocortin receptors in leptin effects. Nature 1997; 27; 390(6658):349. DOI: 10.1038/37016.10.1038/370169389472 Search in Google Scholar

15. Genetic Home Reference. MC4R gene. Available athttps://ghr.nlm.nih.gov/gene/MC4R. Search in Google Scholar

16. Guo G, Tong Y, Xie C, Lange LA. Dopamine transporter, gender, and number of sexual partners among young adults. Eur Journal Hum Genet 2007; 15:279–287. doi:10.1038/sj.ejhg.5201763.10.1038/sj.ejhg.520176317245411 Search in Google Scholar

17. 17.Carboni E, Tanda GL, Frau R, Di Chiara G. Blockade of the noradrenaline carrier increases extracellular dopamine concentrations in the prefrontal cortex: evidence that dopamine is taken up in vivo by noradrenergic terminals. J Neurochem 1990; 55 (3): 1067–70. doi:10.1111/j.1471-4159.1990.tb04599.x.10.1111/j.1471-4159.1990.tb04599.x2117046 Search in Google Scholar

18. 18.Mill J, Asherson P, Browes C, D’Souza U, Craig I. Expression of the dopamine transporter gene is regulated by the 3′ UTR VNTR: evidence from brain and lymphocytes using quantitative RT-PCR. Am J Med Genet 2002; 114: 975–9. DOI: 10.1002/ajmg.b.10948.10.1002/ajmg.b.1094812457396 Search in Google Scholar

19. Lesch KP, Meyer J, Glatz K, Flügge G, Hinney A, Hebebrand J, et al. The 5-HT transporter gene-linked polymorphic region (5-HTTLPR) in evolutionary perspective: alternative biallelic variation in rhesus monkeys. J Neural Transm 1997; 104: 1259–66. DOI: 10.1007/BF01294726.10.1007/BF012947269503271 Search in Google Scholar

20. 20.Johnson BA, Javors MA, Roache JD, Seneviratne C, Bergeson SE, Ait-Daoud N, et al. Can serotonin transporter genotype predict serotonergic function, chronicity, and severity of drinking? Prog Neuropsychopharmacol Biol Psychiatry 2008; 32: 209–16. doi: 10.1016/j.pnpbp.2007.07.030.10.1016/j.pnpbp.2007.07.030227079217950969 Search in Google Scholar

21. Heils A, Teufel A, Petri S, Stöber G, Riederer P, Bengel D, et al. Allelic variation of human serotonin transporter gene expression. J Neurochem 1996; 66: 2621–4. DOI: 10.1046/j.1471-4159.1996.66062621.x.10.1046/j.1471-4159.1996.66062621.x8632190 Search in Google Scholar

22. Janssen PK, Bakker SC, Réthelyi J, Zwinderman AH, Touw DJ, Olivier B, et al.Serotonin transporter promoter region (5-HTTLPR) polymorphism is associated with the intravaginal ejaculation latency time in Dutch men with lifelong premature ejaculation. J Sex Med. 2009; 6(1):276-84. doi: 10.1111/j.1743-6109.2008.01033.x.10.1111/j.1743-6109.2008.01033.x19170855 Search in Google Scholar

23. Ingman WV, Mcgrath LM, Breed WG, Musgrave IF, Robker RL, Robertson SA. The Mechanistic Basis for Sexual Dysfunction in Male Transforming Growth Factor b1 Null Mutant Mice. J Androl 2010;31 (2):95-107. DOI: 10.2164/jandrol.108.006569.10.2164/jandrol.108.00656919234313 Search in Google Scholar

24. Ingman WV, Robertson SA. Defining the actions of transforming growth factor beta in reproduction. Bioessays 2002;24:904–914. DOI: 10.1002/bies.10155.10.1002/bies.1015512325123 Search in Google Scholar

25. Genetic Home Reference. TGFB1 gene. Available at https://ghr.nlm.nih.gov/gene/TGFB1#location. Search in Google Scholar

26. 26.Gao L, Zhao Z, Guo F, Liu Y, Guo J, Zhao Y, et al. Association of endothelial nitric oxide synthase polymorphisms with an increased risk of erectile dysfunction. Asian J Androl 2017;19(3):330-337. doi: 10.4103/1008-682X.163300.10.4103/1008-682X.163300542779026908069 Search in Google Scholar

27. Safarinejad MR, Khoshdel A, Shekarchi B, Taghva A, Safarinejad S. Association of the T-786C, G894T and 4a/4b polymorphisms of the endothelial nitric oxide synthase gene with vasculogenic erectile dysfunction in Iranian subjects. BJU Int 2011; 107(12):1994-2001. doi: 10.1111/j.1464-410X.2010.09755.x.10.1111/j.1464-410X.2010.09755.x20955262 Search in Google Scholar

28. Erol B, Bozdogan G, Akduman B, Dursun A, Bozdogan S, Onem K, et al. eNOS gene intron 4 VNTR and exon 7-G894T polymorphisms in Turkish men with erectile dysfunction: a case control study. J Sex Med 2009; 6(5):1423-9.10.1111/j.1743-6109.2009.01226.x19473288 Search in Google Scholar

29. Safarinejad MR, Safarinejad S, Shafiei N, Safarinejad S. G-protein β3 subunit gene 825C/T polymorphism and its association with the presence, severity, and duration of vasculogenic erectile dysfunction. Fertil Steril 2013; 99:69-75.10.1016/j.fertnstert.2012.08.03322985949 Search in Google Scholar

30. Levine MA, Smallwood PM, Moen PT, Helman LJ, Ahn TG. Molecular cloning of beta3 subunit, a third form of the G-protein beta-subunit polypeptide. Proc Natl Acad Sci USA 1990; 87:2329–2333.10.1073/pnas.87.6.2329536802107550 Search in Google Scholar

31. Kedzierska K, Ciechanowski K, Safranow K, Bober J, Gołembiewska E, Kwiatkowska E, et al. GNB3 C825T and ACE I/D polymorphisms on the sodiumproton exchanger and the prevalence of essential hypertension in males. Arch Med Res 2006; 37:150–157. DOI: 10.1016/j.arcmed.2005.05.012.10.1016/j.arcmed.2005.05.01216314202 Search in Google Scholar

32. Genetic Home Reference. ARgene. Available at https://ghr.nlm.nih.gov/gene/AR. Search in Google Scholar

33. Shukla GC, Plaga AR, Shankar E, Gupta S. Androgen receptor-related diseases: what do we know? Androl 2016; 4:366–381. doi: 10.1111/andr.12167.10.1111/andr.1216726991422 Search in Google Scholar

34. Safarinejad MR, Safarinejad S, Shafiei N. Role of methylenetetrahydrofolate reductase gene polymo rphisms (C677T, A1298C, and G1793A) in the development of early onset vasculogenic erectile dysfunction. Arch Med Res 2010;41(6):410-22.doi: 10.1016/j.arcmed.2010.08.005.10.1016/j.arcmed.2010.08.00521044744 Search in Google Scholar

35. Isthmus Wellness. 2018. MTHRF Gene Mutation and related symptoms and diseases. Available at https://isthmuswellness.com/conditions/mthfr-genemutation/. Search in Google Scholar

36. Botto LD, Yang Q. 5, 10-Methylenetetrahydrofolate Reductase Gene Variants and Congenital Anomalies: A HuGE Review. Am J Epidemiol 2000; 151 (9): 862-877. DOI: 10.1093/oxfordjournals.aje.a010290.10.1093/oxfordjournals.aje.a01029010791559 Search in Google Scholar

37. Jorgenson E, Matharu N, Palmer MR, Yin J, Shan J, Hoffmann TJ, et al. Genetic variation in the SIM1 locus is associated with erectile dysfunction. Proc Natl Acad Sci 2018;115 (43):11018-11023. DOI: 10.1073/pnas.1809872115.10.1073/pnas.1809872115620549430297428 Search in Google Scholar

38. Michaud JL, Boucher F, Melnyk A, Gauthier F, Goshu E, Lévy E, et al. Sim1 haploinsufficiency causes hyperphagia, obesity and reduction of the paraventricular nucleus of the hypothalamus. Hum Mol Genet 2001; 10(14):1465–1473. DOI: 10.1093/hmg/10.14.1465.10.1093/hmg/10.14.146511448938 Search in Google Scholar

39. Zegers D, Beckers S, Hendrickx R, Van Camp JK, de Craemer V, Verrijken A, et al. Mutation screen of the SIM1 gene in pediatric patients with early-onset obesity. Inter J Obesity 2014; 38:1000–1004. doi:10.1038/ijo.2013.188.10.1038/ijo.2013.18824097297 Search in Google Scholar

40. Kaiser P. First genetic risk factor for erectile dysfunction identified. ScienceDaily. Available at www.sciencedaily.com/releases/2018/10/181008183357.htm (accessed December 13, 2019). Search in Google Scholar

41. Semple E, Hill JW. Sim1 Neurons Are Sufficient for MC4R-Mediated Sexual Function in Male Mice. Endocrinol 2018;159(1):439-449. doi: 10.1210/en.2017-00488.10.1210/en.2017-00488576159129059347 Search in Google Scholar

42. Mul JD, van Boxtel R, Bergen DJ, Brans MA, Brakkee JH, Toonen PW, et al. Melanocortin receptor 4 deficiency affects body weight regulation, grooming behavior, and substrate preference in the rat. Obesity (Silver Spring) 2012; 20:612–621. doi: 10.1038/oby.2011.81.10.1038/oby.2011.81328675821527895 Search in Google Scholar

43. Farooqi IS, Keogh JM, Yeo GS, Lank EJ, Cheetham T, O’Rahilly S. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med 2003; 348(12):1085-95. DOI: 10.1056/NEJMoa022050.10.1056/NEJMoa02205012646665 Search in Google Scholar

44. University of Cambridge. Genetic of Obesity. Available at https://www.mc4r.org.uk/ Search in Google Scholar

45. Sandrock M, Schulz A, Merkwitz C, Schöneberg T, Spanel-Borowski K, Ricken A. Reduction in corpora lutea number in obese melanocortin-4-receptor-deficient mice. Reprod Biol Endocrinol 2009; 7: 7-24. https://doi.org/10.1186/1477-7827-7-24.10.1186/1477-7827-7-24266752519309531 Search in Google Scholar

46. Van der Ploeg LH, Martin WJ, Howard AD, Nargund RP, Austin CP, Guan X. A role for the melanocortin 4 receptor in sexual function. Proc Natl Acad Sci U S A. 2002; 99(17):11381-6. DOI: 10.1073/pnas.172378699.10.1073/pnas.17237869912326512172010 Search in Google Scholar

47. Irani BG, Xiang Z, Moore MC, Mandel RJ, Haskell-Luevano C. Voluntary exercise delays monogenetic obesity and overcomes reproductive dysfunction of the melanocortin-4 receptor knockout mouse. Biochem Biophys Res Commun 2005; 326(3):638-44. DOI: 10.1016/j.bbrc.2004.11.084.10.1016/j.bbrc.2004.11.08415596147 Search in Google Scholar

48. Schiöth HB, Watanobe H. Melanocortins and reproduction. Brain Res Brain Res Rev 2002; 38(3):340-50. DOI: 10.1016/s0165-0173(01)00159-x.10.1016/S0165-0173(01)00159-X Search in Google Scholar

49. Semple E, Hill JW. Sim1 Neurons Are Sufficient for MC4R-Mediated Sexual Function in Male Mice. Endocrinol 2018;159(1):439-449. doi: 10.1210/en.2017-00488.10.1210/en.2017-00488 Search in Google Scholar

50. Chen X, Huang L, Tan HY, Li H, Wan Y, Cowley M, et al. Deficient melanocortin-4 receptor causes abnormal reproductive neuroendocrine profile in female mice. Reprod 2017;153:267–276. DOI: 10.1530/REP-16-0341.10.1530/REP-16-0341 Search in Google Scholar

51. National Center for Biotechnology Information. SLC6A3 solute carrier family 6 member 3 [Homo sapiens (human)]. [Updated 2020]. Available at https://www.ncbi.nlm.nih.gov/gene/6531. Search in Google Scholar

52. Genetic Home Reference. SLC6A3 gene. Available at https://ghr.nlm.nih.gov/gene/SLC6A3. Search in Google Scholar

53. Sperling H, Eisenhardt A, Virchow S, Hauck E, Lenk S, Porst H. Sildenafil response is influenced by the G protein beta 3 subunit GNB3 C825T polymorphism: a pilot study. J Urol 2003;169(3):1048-51. DOI: 10.1097/01.ju.0000058369.72348.ba.10.1097/01.ju.0000058369.72348.ba Search in Google Scholar

54. Vandenbergh DJ, Persico AM, Hawkins AL, Griffin CA, Li X, Jabs EW, et al. Human dopamine transporter gene (DAT1) maps to chromosome 5p15.3 and displays a VNTR. Genomics 1992; 14: 1104–6. DOI: 10.1016/s0888-7543(05)80138-7.10.1016/S0888-7543(05)80138-7 Search in Google Scholar

55. Safarinejad MR. Relationship between premature ejaculation and genetic polymorphisms of the dopamine transporter gene (SLC6A3). BJU Inter 2010;108:292–296. doi:10.1111/j.1464-410X.2010.09809.x.10.1111/j.1464-410X.2010.09809.x Search in Google Scholar

56. Gelernter J, Kranzler H, Cubells JF. Serotonin transporter protein (SLC6A4) allele and haplotype frequencies and linkage disequilibria in African- and European-American and Japanese populations and in alcohol dependent subjects. Hum Genet 1997; 101: 243–6. DOI: 10.1007/s004390050624.10.1007/s004390050624 Search in Google Scholar

57. Genetic Home Reference. SLC6A4 gene. Available at https://ghr.nlm.nih.gov/gene/SLC6A4. Search in Google Scholar

58. Greenfield JR, Miller JW, Keogh JM, Henning E, Satterwhite JH, Cameron GS, et al. Modulation of blood pressure by central melanocortinergic pathways. N Engl J Med 2009 Jan 1; 360(1):44-52. doi: 10.1056/NEJMoa0803085.10.1056/NEJMoa0803085 Search in Google Scholar

59. Fiskerstrand CE, Lovejoy EA, Quinn JP. An intronic polymorphic domain often associated with susceptibility to affective disorders has allele dependent differential enhancer activity in embryonic stem cells. FEBS Lett 1999; 458: 171–4. DOI:10.1016/s0014-5793(99)01150-3.10.1016/S0014-5793(99)01150-3 Search in Google Scholar

60. Fan JB, Sklar P. Meta–analysis reveals association between serotonin transporter gene STin2 VNTR polymorphism and schizophrenia. Mol Psychiatry 2005; 10: 928–38. DOI: 10.1038/sj.mp.4001690.10.1038/sj.mp.400169015940296 Search in Google Scholar

61. Lesch KP, Bengel D, Heils A,Sabol SZ, Greenberg BD, Petri S, et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 1996; 274: 1527–31. DOI: 10.1126/science.274.5292.1527.10.1126/science.274.5292.15278929413 Search in Google Scholar

62. Arias B, Catalan R, Gasto C, Gutierrez B, Fananas L. 5- HTTLPR polymorphism of the serotonin transporter gene predicts non-remission in major depression patients treated with citalopram in a 12-weeks follow up study. J Clin Psychopharmacol 2003; 23: 563–7. DOI: 10.1097/01.jcp.0000095350.32154.73.10.1097/01.jcp.0000095350.32154.7314624186 Search in Google Scholar

63. MacKenzie A, Quinn J. A serotonin transporter gene intron 2 polymorphic region, correlated with affective disorders, has allele-dependent differential enhancerlike properties in the mouse embryo. Proc Natl Acad Sci USA 1999; 96: 15251-5. DOI: 10.1073/pnas.96.26.15251.10.1073/pnas.96.26.152512480610611371 Search in Google Scholar

64. Huang YY, Zhang XS, Gao JJ, Gao P, Liang CZ. Association between serotonin transporter 5-HTTLPR and STin2 VNTR polymorphisms and anejaculation: a preliminary report. Asian J Androl 2017;19:719-20. DOI: 10.4103/1008-682X.182821.10.4103/1008-682X.182821567643527586024 Search in Google Scholar

65. De Jong TR, Veening JG, Waldinger MD, Cools AR, Olivier B. Serotonin and the neurobiology of the ejaculatory threshold. Neurosci Biobehav Rev 2006; 30: 893-907. DOI: 10.1016/j.neubiorev.2006.01.001.10.1016/j.neubiorev.2006.01.00116529815 Search in Google Scholar

66. Ingman WV, Robertson SA. Mammary gland development in transforming growth factor beta1 null mutant mice: systemic and epithelial effects. Biol Reprod 2008;79:711–717. DOI: 10.1095/biolreprod.107.067272.10.1095/biolreprod.107.06727218614704 Search in Google Scholar

67. Ryu JK, Han JY, Chu YC, Song SU, Lee KH, Yoon SM, et al. Expression of cavernous transforming growth factor-beta1 and its type II receptor in patients with erectile dysfunction. Int J Androl 2004;27(1):42-9. DOI: 10.1046/j.0105-6263.2003.00447.x.10.1046/j.0105-6263.2003.00447.x14718046 Search in Google Scholar

68. Morelli A, Vignozzi L, Filippi S, Mancina R, Maggi M. Erectile dysfunction: molecular biology, pathophysiology and pharmacological treatment. Minerva Urol Nefrol 2005;57(2):85-90. https://www.ncbi.nlm.nih.gov/pubmed/15951732. Search in Google Scholar

69. Sinici I, Güven EO, Serefoğlu E, Hayran M. T-786C polymorphism in promoter of eNOS gene as genetic risk factor in patients with erectile dysfunction in Turkish population. Urology 2010; 75(4):955-60. doi: 10.1016/j.urology.2009.06.063.10.1016/j.urology.2009.06.06319800665 Search in Google Scholar

70. Safarinejad MR, Khoshdel A, Shekarchi B, Taghva A, Safarinejad S. Association of the T-786C, G894T and 4a/4b polymorphisms of the endothelial nitric oxide synthase gene with vasculogenic erectile dysfunction in Iranian subjects. BJU Inter 2010; 107:1994–2001 |doi:10.1111/j.1464-410X.2010.09755.x.10.1111/j.1464-410X.2010.09755.x20955262 Search in Google Scholar

71. Lee YC, Huang SP, Liu CC, Yang YH, Yeh HC, Li WM, et al. The association of eNOS G894T polymorphism with metabolic syndrome and erectile dysfunction. J Sex Med 2012; 9(3):837-43.doi: 10.1111/j.1743-6109.2011.02588.x.10.1111/j.1743-6109.2011.02588.x22304542 Search in Google Scholar

72. Ersan A, Arzu A, Hakan A, Esra A. The association of Intron 4 VNTR and Glu298Asp polymorphisms of the nitric oxide synthetase 3 gene and vasculogenic erectile dysfunction in Turkish men. Syst Biol Reprod Med 2019; 65 (5):383-389, DOI: 10.1080/19396368.2019.1601792.10.1080/19396368.2019.160179230977424 Search in Google Scholar

73. Jíra M, Závodná E, Honzíková N, Nováková Z, Vašků A, Izakovičová Hollá L, et al. Association of eNOS gene polymorphisms T-786C and G894T with blood pressure variability in man. Physiol Res 2011; 60(1):193-7.https://doi.org/10.33549/physiolres.931887.10.33549/physiolres.93188720945955 Search in Google Scholar

74. Kedzierska K, Ciechanowski K, Safranow K, Bober J, Gołembiewska E, Kwiatkowska E, et al. GNB3 C825T and ACE I/D polymorphisms on the sodium-proton exchanger and the prevalence of essential hypertension in males. Arch Med Res 2006;37:150–157.10.1016/j.arcmed.2005.05.01216314202 Search in Google Scholar

75. National Center for Biotechnology Information. GNB3 G protein subunit beta 3. Available at https://www.ncbi.nlm.nih.gov/gene/2784. Search in Google Scholar

76. Yafi FA, Jenkins L, Albersen M, Corona G, Isidori AM, Goldfarb S, et al. Erectile dysfunction. Nat Rev Dis Primers 2016; 2:16003. doi: 10.1038/nrdp.2016.3.10.1038/nrdp.2016.3502799227188339 Search in Google Scholar

77. Rosskopf D, Manthe I, Habich C, Kielbik M, Eisenhardt A, Nikula C, et al. Identification and characterization of G beta 3s2, a novel splice variant of the G-protein beta 3 subunit. Biochem 2003; 371:223–232.10.1042/bj20021208 Search in Google Scholar

78. Ben Khedher MR, Abid M, Jamoussi K, Hammami M. Comprehensive insight into functional interaction between GNB3 C825T and eNOS T-786C, G894T gene polymorphisms and association with susceptibility to diabetic erectile dysfunction. Androl 2018; 6(6): 865–873. https://doi.org/10.1111/andr.12543.10.1111/andr.1254330101547 Search in Google Scholar

79. Seckin Y, Yigit Z, Yesilada E, Gulbay G, Cagin YF, Gozukara H, et al. Association of eNOS gene polymorphisms G894T and T-786C with risk of hepatorenal syndrome. Gastroenterol Res Pract 2016; Article ID 2579626. https://doi.org/10.1155/2016/2579626.10.1155/2016/2579626499532327594880 Search in Google Scholar

80. Genetic Home Reference. Androgen insensitivity syndrome. Available at https://ghr.nlm.nih.gov/condition/androgen-insensitivity-syndrome. Search in Google Scholar

81. Wåhlin-Jacobsen S, Flanagan JN, Pedersen AT, Kristensen E, Arver S, Giraldi A. Androgen Receptor Polymorphism and Female Sexual Function and Desire. J Sex Med 2018; 15(11):1537-1546. doi: 10.1016/j.jsxm.2018.09.013.10.1016/j.jsxm.2018.09.01330415810 Search in Google Scholar

82. Khan H.L, Bhatti S, Abbas S, Khan YL, Marquez RM, Aslamkhan M, et al. Longer trinucleotide repeats of androgen receptor are associated with higher testosterone and low oxytocin levels in diabetic premature ejaculatory dysfunction patients. Basic Clin Androl 2018; 28:3. doi:10.1186/s12610-018-0068-0.10.1186/s12610-018-0068-0583885829556396 Search in Google Scholar

83. Harvey RA, Ferrier DR. In: Lippincott’s Illustrated Reviews, Biochemistry. 5. Rhyner S, editor. Philadelphia: Wolters Kluwer Health; 2011. pp. 264–5. Search in Google Scholar

84. Loscalzo J, Handy DE. Epigenetic modifications: basic mechanisms and role in cardiovascular disease (2013 Grover Conference Series). Pulm Circ 2014;4(2):169–74. doi: 10.1086/675979.10.1086/675979407078325006435 Search in Google Scholar

85. Giovannone R, Busetto GM, Antonini G, De Cobelli O, Ferro M, Tricarico S, et al. Hyperhomocysteinemia as an Early Predictor of Erectile Dysfunction. Medicine 2015; 94 (39): p e1556. doi: 10.1097/MD.0000000000001556.10.1097/MD.0000000000001556461685626426624 Search in Google Scholar

86. Tzoumas N, Farrah TE, Dhaun N, Webb DJ. Established and emerging therapeutic uses of phosphodiesterase type 5 inhibitors in cardiovascular disease. Br J Pharmacol 2019; doi:10.1111/bph.14920. [Epub ahead of print].10.1111/bph.14920770710031721165 Search in Google Scholar

87. Cellek S, Rees RW, Kalsi J. A rho-kinase inhibitor, soluble guanylate cyclase activator and nitric oxidereleasing PDE5 inhibitor: Novel approaches to erectile dysfunction. Expert Opin Investig Drugs 2002;11(11):1563–73. DOI: 10.1517/13543784.11.11.1563.10.1517/13543784.11.11.156312437503 Search in Google Scholar

88. Yoshimura N, Kato R, Chancellor MB, Nelson JB, Glorioso JC. Gene therapy as future treatment of erectile dysfunction. Expert Opin Biol Ther 2010;10(9):1305-14. doi: 10.1517/14712598.2010.510510.10.1517/14712598.2010.510510306494520662742 Search in Google Scholar

89. Soni SD, Song W, West JL, et al. Nitric oxide-releasing polymeric microspheres improve diabetes-related erectile dysfunction. J Sex Med 2013;10:1915–25. doi:10.1111/jsm.12216. doi: 10.1111/jsm.12216.10.1111/jsm.1221623751157 Search in Google Scholar

90. Deng W, Bivalacqua T, Hellstrom W, et al. Gene and stem cell therapy for erectile dysfunction. Int J Impot Res 2005; 17: S57–S63. https://doi.org/10.1038/sj.ijir.3901430.10.1038/sj.ijir.390143016391545 Search in Google Scholar

91. Bivalacqua TJ Armstrong JS, Biggerstaff J. et al. Gene transfer of extracellular SOD to the penis reduces O2- and improves erectile function in aged rats. Am J Physiol Heart Circ Physiol 2003; 284: H1408–H1421. https://doi.org/10.1152/ajpheart.00770.2002.10.1152/ajpheart.00770.200212505874 Search in Google Scholar

92. Mobley DF, Khera M, Baum N. Recent advances in the treatment of erectile dysfunction. Postgrad Med J 2017;93:679-685. doi: 10.1136/postgradmedj-2016-134073.10.1136/postgradmedj-2016-13407328751439 Search in Google Scholar

93. Bahk JY, Jung JH, Han H, Min SK, Lee YS. Treatment of diabetic impotence with umbilical cord blood stem cell intracavernosal transplant: Preliminary report of 7 cases. Exp Clin Transplant 2010; 8: 150-160. Search in Google Scholar

94. Epifanova MV, Gvasalia BR, Durashov MA. et al. Platelet-Rich Plasma Therapy for Male Sexual Dysfunction: Myth or Reality? Sex Med Rev, 2020; 8 (1): 106-113. https://doi.org/10.1016/j.sxmr.2019.02.00210.1016/j.sxmr.2019.02.00230898594 Search in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Medicine, Clinical Medicine, other