Zacytuj

Maitin DSN, Maitin DN, Priyank DH, Raj DS. Evaluation of spectrophotometer analysis of bulk-fill composites in various daily used beverages. Int Res J Med Bio Sci. 2019;3(10):334-341. Search in Google Scholar

Chen L, Shen H, Suh BI. Bioactive dental restorative materials: a review. Am J Dent. 2013;26(4):219-27. Search in Google Scholar

Zakaria SM, Sharif Zein SH, Othman MR., Yang F, Jansen JA. Nanophase Hydroxyapatite as a Biomaterial in Advanced Hard Tissue Engineering: A Review. Tissue Eng Part B Rev. 2013;19(5):431-441. Search in Google Scholar

Liu F, Jiang X, Zhang Q, Zhu M. Strong and bioactive dental resin composite containing poly(Bis-GMA) grafted hydroxyapatite whiskers and silica nanoparticles. Compos Sci Technol. 2014;101:86-93. Search in Google Scholar

Skrtic D, Antonucci JM. Polymeric dental composites based on remineralizing amorphous calcium phosphate fillers. Curr Trends Polym Sci. 2016;17:1-31. Search in Google Scholar

Melo MA, Guedes SF, Xu HH, Rodrigues LK. Nanotechnology-based restorative materials for dental caries management. Trends Biotechnol. 2013;31(8):459-67. Search in Google Scholar

Priyadarsini S, Mukherjee S, Mishra M. Nanoparticles used in dentistry: A review. J Oral Biol Craniofac Res. 2018;8(1):58-67. Search in Google Scholar

Dorozhkin SV, Epple M. Biological and medical significance of calcium phosphates. Angew Chem Int Ed Engl. 2002;41(17):3130-46. Search in Google Scholar

Zhang K, Zhang N, Weir MD, Reynolds MA, Bai Y, Xu HHK. Bioactive Dental Composites and Bonding Agents Having Remineralizing and Antibacterial Characteristics. Dent Clin North Am. 2017;61(4):669-687. Search in Google Scholar

Liu LP, Xiao Y B, Xiao ZW, Wang ZB, Li C, Gong X. Toxicity of hydroxyapatite nanoparticles on rabbits. Wei Sheng Yan Jiu. 2005;34(4):474-76. Search in Google Scholar

Wang L, Zhou G, Liu H, Niu X, Han J, Zheng L, Fan Y. Nano-hydroxyapatite particles induce apoptosis on MC3T3-E1 cells and tissue cells in SD rats. Nanoscale. 2012;4:2894-99. Search in Google Scholar

Kesmati M, Torabi M, Ghandizadeh-Dezfuli M. Nanoparticles of Zinc Oxide Reduces Acute Somatic Pain in Adult Female Wistar Rats. Zahedan J Res Med Sci. 2014;16(2):24-28. Search in Google Scholar

Teisseyre A, Mercik K, Mozrzymas JW. The modulatory effect of zinc ions on voltage-gated potassium currents in cultured rat hippocampal neurons is not related to Kv1.3 channels. J Physiol Pharmacol. 2007;58(4):699-715. Search in Google Scholar

Kesmati M, Torabi M. Interaction between Analgesic Effect of Nano and Conventional size of Zinc Oxide and Opioidergic System Activity in Animal Model of Acute Pain. Basic Clin Neurosci. 2014;5(1):80-7. Search in Google Scholar

Torabi M, Kesmati M, Galehdari H, Varzi HN, Pourreza N. MgO and ZnO nanoparticles anti-nociceptive effect modulated by glutamate level and NMDA receptor expression in the hippocampus of stressed and non-stressed rats. Physiol Behav. 2020;214:112727. Search in Google Scholar

Mahmoudvand H, Khaksarian M, Ebrahimi K, Shiravand S, Jahanbakhsh S, Niazi M, et al. Antinociceptive effects of green synthesized copper nanoparticles alone or in combination with morphine. Ann Med Surg (Lond). 2020;51:31-36. Search in Google Scholar

Najafi R, Hosseini A, Ghaznavi H, Mehrzadi S, Sharifi AM. Neuroprotective effect of cerium oxide nanoparticles in a rat model of experimental diabetic neuropathy. Brain Res Bull. 2017;131:117-122.. Search in Google Scholar

Mosa IF, Youssef M, Kamel M, Mosa OF, Helmy Y. Synergistic antioxidant capacity of CsNPs and CurNPs against cytotoxicity, genotoxicity and pro-inflammatory mediators induced by hydroxyapatite nanoparticles in male rats. Toxicol Res (Camb). 2019; 8:939-52. Search in Google Scholar

Xu J, Xu P, Li Z, Huang J, Yang Z. Oxidative stress and apoptosis induced by hydroxyapatite nanoparticles in C6 cells. J Biomed Mater Res A. 2012;100:738-45. Search in Google Scholar

Katanić J, Boroja T, Stanković N, Mihailović V, Mladenović M, Kreft S, et al. Bioactivity, stability and phenolic characterization of Filipendula ulmaria (L.) Maxim. Food Funct. 2015;6(4):1164-75. Search in Google Scholar

Barrod L, Cabrita L, Boas MV, Carvalho AM, Ferreira ICFR. Chemical, biochemical and electrochemical assays to evaluate phytochemicals and antioxidant activity of wild plants. Food Chem. 2011;127:1600-08. Search in Google Scholar

Samardžić S, Arsenijević J, Božić D, Milenković M, Tešević V, Maksimović Z. Antioxidant, anti-inflammatory and gastroprotective activity of Filipendula ulmaria (L.) Maxim. and Filipendula vulgaris Moench. J Ethnopharmacol. 2018;213:132-37. Search in Google Scholar

Katanić J, Matić S, Pferschy-Wenzig EM, Kretschmer N, Boroja T, Mihailović V, et al. Filipendula ulmaria extracts attenuate cisplatin-induced liver and kidney oxidative stress in rats: in vivo investigation and LC-MS analysis. Food Chem Toxicol. 2017;99:86-102. Search in Google Scholar

Katanić J, Boroja T, Mihailović V, Nikles S, Pan SP, Rosić G, Selaković D, Joksimović J, Mitrović S, Bauer R. In vitro and in vivo assessment of meadowsweet (Filipendula ulmaria) as anti-inflammatory agent. J Ethnopharmacol. 2016;193:627-36. Search in Google Scholar

Zhang K, Cheng L, Weir MD, Bai YX, Xu HH. Effects of quaternary ammonium chain length on the antibacterial and remineralizing effects of a calcium phosphate nanocomposite. Int J Oral Sci. 2016;8:45-53. Search in Google Scholar

Katanić J, Pferschy-Wenzig EM, Mihailović V, Boroja T, Pan SP, Nikles S, et al. Phytochemical analysis and antiinflamatory effects of Filipendula vulgaris Moench extracts. Food Chem Toxicol. 2018;122:151-62. Search in Google Scholar

Bannon AW, Malmberg AB. Models of nociception: hot-plate, tail-flick, and formalin tests in rodents. Curr Protoc Neurosci. 2007; Chapter 8:Unit 8.9. Search in Google Scholar

Sawicki K, Czajka M, Matysiak-Kucharek M, Fal B, Drop B, Męczyńska-Wielgosz S, et al. Toxicity of metallic nanoparticles in the central nervous system. Nano Rev. 2019;8:175-200. Search in Google Scholar

Hong Y, Fan H, Li B, Guo B, Liu M, Zhang X. Fabrication, biological effects, and medical applications of calcium phosphate nanoceramics. Mater Sci Eng R. 2010;70(3-6):225-42. Search in Google Scholar

Abbas OA, Ibrahim IG, Ismail AE. Therapeutic Effects of Nano-HAp in a Rat Model of AlCl3 Induced Neurotoxicity. Iran J Pharm Res. 2019;18:1309-22. Search in Google Scholar

Xue Y, Wu J, Sun J. Four types of inorganic nanoparticles stimulate the inflammatory reaction in brain microglia and damage neurons in vitro. Toxicol Lett. 2012;14:91-98. Search in Google Scholar

Li G, Huang J, Li Y, Zhang R, Deng B, Zhang J, et al. In vitro study on influence of a discrete nano-hydroxyapatite on leukemia P388 cell behavior. Biomed Mater Eng. 2007;17:321-27. Search in Google Scholar

Masouleh MP, Hosseini V, Pourhaghgouy M, Bakht MK. Calcium Phosphate Nanoparticles Cytocompatibility Versus Cytotoxicity: A Serendipitous Paradox. Curr Pharm Des. 2017;23:2930-51. Search in Google Scholar

Meena R, Kesari K, Rani M, Paulraj R. Effects of hydroxyapatite nanoparticles on proliferation and apoptosis of human breast cancer cells (MCF-7). J Nanoparticle Res. 2012;14:1-11. Search in Google Scholar

Miedlich SU, Zalutskaya A, Zhu ED, Demay MB. Phosphate-induced apoptosis of hypertrophic chondrocytes is associated with a decrease in mitochondrial membrane potential and is dependent upon Erk1/2 phosphorylation. J Biol Chem. 2010;285:18270-75. Search in Google Scholar

eISSN:
2956-2090
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Medicine, Clinical Medicine, other