Otwarty dostęp

Administration of 4-Hydroxy-3,5-Di-Tertbutyl Cinnamic Acid Restores Mitochondrial Function in Rabbits with Cerebral Ischemia


Zacytuj

1. Feigin VL, Krishnamurthi RV, Parmar P, et al. Update on the Global Burden of Ischemic and Hemorrhagic Stroke in 1990-2013: The GBD 2013 Study. Neuroepid. 2015; 45(3): 161-176.10.1159/000441085463328226505981 Search in Google Scholar

2. Ma Y, Liu Y, Zhang Z, Yang GY. Significance of Complement System in Ischemic Stroke: A Comprehensive Review. Aging Dis. 2019; 10(2): 429-462.10.14336/AD.2019.0119645704631011487 Search in Google Scholar

3. Alawieh A, Elvington A, Zhu H, et al. Modulation of post-stroke degenerative and regenerative processes and subacute protection by site-targeted inhibition of the alternative pathway of complement. J Neuroinflammation. 2015; 12: 247.10.1186/s12974-015-0464-8469629926714866 Search in Google Scholar

4. www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death. Search in Google Scholar

5. Yew WP, Djukic ND, Jayaseelan JSP, et al. Early treatment with minocycline following stroke in rats improves functional recovery and differentially modifies responses of peri-infarct microglia and astrocytes. J Neuroinflammation. 2019; 16(1): 6.10.1186/s12974-018-1379-y632574530626393 Search in Google Scholar

6. Kalogeris T, Baines CP, Krenz M, Korthuis RJ. Ischemia/ Reperfusion. Compr Physiol. 2016; 7(1): 113-170.10.1002/cphy.c160006564801728135002 Search in Google Scholar

7. Maillet A, Yadav S, Loo YL, Sachaphibulkij K, Pervaiz S. A novel Osmium-based compound targets the mitochondria and triggers ROS-dependent apoptosis in colon carcinoma. Cell Death Dis. 2013; 4(6): e653.10.1038/cddis.2013.185369855223744353 Search in Google Scholar

8. Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev. 2014; 94(3): 909-950.10.1152/physrev.00026.2013410163224987008 Search in Google Scholar

9. Duan F, Yu Y, Guan R, Xu Z, Liang H, Hong L. Vitamin K2 Induces Mitochondria-Related Apoptosis in Human Bladder Cancer Cells via ROS and JNK/p38 MAPK Signal Pathways. PLoS One. 2016; 11(8): e0161886.10.1371/journal.pone.0161886500339227570977 Search in Google Scholar

10. Shalini S, Dorstyn L, Dawar S, Kumar S. Old, new and emerging functions of caspases. Cell Death Differ. 2015; 22(4): 526-539.10.1038/cdd.2014.216435634525526085 Search in Google Scholar

11. Bano D, Prehn JHM. Apoptosis-Inducing Factor (AIF) in Physiology and Disease: The Tale of a Repented Natural Born Killer. EBioMedicine. 2018; 30: 29-37.10.1016/j.ebiom.2018.03.016595234829605508 Search in Google Scholar

12. Pluta R, Ułamek-Kozioł M, Czuczwar SJ. Neuroprotective and Neurological/Cognitive Enhancement Effects of Curcumin after Brain Ischemia Injury with Alzheimer’s Disease Phenotype. Int J Mol Sci. 2018; 19(12): 4002.10.3390/ijms19124002632095830545070 Search in Google Scholar

13. Voronkov AV, Abaev VT, Oganesyan ET, Pozdnyakov DI. Some aspects of cerebroprotective activity of 4-hydroxy- 3,5-di-tretbutyl cinnamic acid in ischemic brain damage in the experiment. Med. Bull. of North Caucasus. 2018; 13(1): 90-93. Search in Google Scholar

14. Ciprov AV, Kostina YuA. Study of cardioprotective efficacy of pyrimidine and 3-hydroxypyridine derivatives combination in anticancer chemotherapy in experiment Saratov j. med.scien.res. 2014; 10(2): 257-61. (in Russian) Search in Google Scholar

15. McGraw KP., Pashayan AG., Wendel OT. Brain Infarction in Mongolian gerbil worsened in the treatment of phenoxybenzamine. Stroke. 1976; 7(5): 485-488.10.1161/01.STR.7.5.485 Search in Google Scholar

16. Patel SP, Sullivan PG, Pandya JD, et al. N-acetylcysteine amide preserves mitochondrial bioenergetics and improves functional recovery following spinal trauma. Exp Neurol. 2014; 257: 95-105.10.1016/j.expneurol.2014.04.026411414824805071 Search in Google Scholar

17. Voronkov A.V., Pozdnyakov D.I., Nigaryan S.A., Khouri E.I., Miroshnichenko K.A., Sosnovskaya A.V., Olokhova E.A. Еvaluation of the mitochondria respirometric function in the conditions of pathologies of various geneses. Pharmacy & Pharmacology. 2019; 7(1): 20-31.10.19163/2307-9266-2019-7-1-20-31 Search in Google Scholar

18. Zhyliuk VI, Mamchur VV, Pavlov S. Role of functional state of neuronal mitochondria of cerebral cortex in mechanisms of nootropic activity of neuroprotectors in rats with alloxan hyperglycemia. Eksp. i klin. farm. 2015; 78: 10-4. Search in Google Scholar

19. Chen F, Qi Z, Luo Y, et al. Non-pharmaceutical therapies for stroke: mechanisms and clinical implications. Prog Neurobiol. 2014; 115: 246-269.10.1016/j.pneurobio.2013.12.007396994224407111 Search in Google Scholar

20. Fang MC, Cutler DM, Rosen AB. Trends in thrombolytic use for ischemic stroke in the United States. J Hosp Med. 2010; 5(7): 406-409.10.1002/jhm.689302458920578049 Search in Google Scholar

21. Lin MP, Sanossian N, Liebeskind DS. Imaging of prehospital stroke therapeutics. Expert Rev Cardiovasc Ther. 2015; 13(9): 1001-1015.10.1586/14779072.2015.1075882483828026308602 Search in Google Scholar

22. Meschia JF, Bushnell C, Boden-Albala B, et al. Guidelines for the primary prevention of stroke: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2014; 45(12): 3754-3832.10.1161/STR.0000000000000046502056425355838 Search in Google Scholar

23. Zhao J, Zhang X, Dong L, et al. Cinnamaldehyde inhibits inflammation and brain damage in a mouse model of permanent cerebral ischaemia. Br J Pharmacol. 2015; 172(20): 5009-5023.10.1111/bph.13270462199026234631 Search in Google Scholar

24. Hemmati AA, Alboghobeish S, Ahangarpour A. Effects of cinnamic acid on memory deficits and brain oxidative stress in streptozotocin-induced diabetic mice. Korean J Physiol Pharmacol. 2018; 22(3): 257-267.10.4196/kjpp.2018.22.3.257592833929719448 Search in Google Scholar

25. Ren Z, Zhang R, Li Y, Li Y, Yang Z, Yang H. Ferulic acid exerts neuroprotective effects against cerebral ischemia/ reperfusion-induced injury via antioxidant and anti-apoptotic mechanisms in vitro and in vivo. Int J Mol Med. 2017; 40(5): 1444-1456.10.3892/ijmm.2017.3127562788928901374 Search in Google Scholar

26. Aramsri M, Catherine B Chan, Weerachat S, Sirichai A. Isoferulic acid attenuates methylglyoxal-induced apoptosis in INS-1 rat pancreatic β-cell through mitochondrial survival pathways and increasing glyoxalase-1 activity. Biomed. & Pharm. 2018; 101: 777-85. Search in Google Scholar

27. Wang P, Zhao R, Yan W, Zhang X, et.al. Neuroprotection by new ligustrazine-cinnamon acid derivatives on CoCl2-induced apoptosis in differentiated PC12 cells. Bioorg Chem. 2018; 77: 360-369.10.1016/j.bioorg.2018.01.02929421712 Search in Google Scholar

28. Anupama N, Preetha Rani MR, Shyni GL, Raghu KG. Glucotoxicity results in apoptosis in H9c2 cells via alteration in redox homeostasis linked mitochondrial dynamics and polyol pathway and possible reversal with cinnamic acid. Toxicol In Vitro. 2018; 53: 178-192.10.1016/j.tiv.2018.08.01030144576 Search in Google Scholar

29. Naoi M, Wu Y, Shamoto-Nagai M, Maruyama W. Mitochondria in Neuroprotection by Phytochemicals: Bioactive Polyphenols Modulate Mitochondrial Apoptosis System, Function and Structure. Int J Mol Sci. 2019; 20(10): 2451.10.3390/ijms20102451656618731108962 Search in Google Scholar

30. Gannon NP, Schnuck JK, Mermier CM, Conn CA, et.al. trans-Cinnamaldehyde stimulates mitochondrial biogenesis through PGC-1α and PPARβ/δ leading to enhanced GLUT4 expression. Biochimie. 2015; 119: 45-51.10.1016/j.biochi.2015.10.00126449747 Search in Google Scholar

31. Zielonka J, Joseph J, Sikora A, et al. Mitochondria-Targeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, and Therapeutic and Diagnostic Applications. Chem Rev. 2017; 117(15): 10043-10120.10.1021/acs.chemrev.7b00042561184928654243 Search in Google Scholar

32. Оganesyan E.T., Shatokhin S.S., Glushko A.A. Using quantum-chemical parameters for predicting anti-radical (но∙) activity of related structures containing a cinnamic mold fragment. i. derivatives of cinnamic acid, chalcon and flavanon. Pharmacy & Pharmacology. 2019; 7(1): 53-66. Search in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Medicine, Clinical Medicine, other