Zacytuj

1. Janisch NH, Gardner TB. Advances in Management of Acute Pancreatitis. Gastroenterology clinics of North America. 2016; 45(1): 1-8.10.1016/j.gtc.2015.10.004Search in Google Scholar

2. Zhang X, Zhu C, Wu D, Jiang X. Possible role of toll-like receptor 4 in acute pancreatitis. Pancreas. 2010; 39(6): 819-24.10.1097/MPA.0b013e3181ca065cSearch in Google Scholar

3. Sah RP, Garg P, Saluja AK. Pathogenic mechanisms of acute pancreatitis. Current opinion in gastroenterology. 2012; 28(5): 507-15.10.1097/MOG.0b013e3283567f52Search in Google Scholar

4. Lankisch PG, Apte M, Banks PA. Acute pancreatitis. Lancet (London, England). 2015; 386(9988): 85-96.10.1016/S0140-6736(14)60649-8Search in Google Scholar

5. Gukovskaya AS, Gukovsky I, Algul H, Habtezion A. Autophagy, Inflammation, and Immune Dysfunction in the Pathogenesis of Pancreatitis. Gastroenterology. 2017; 153(5): 1212-26.10.1053/j.gastro.2017.08.071Search in Google Scholar

6. Bhatia M, Brady M, Shokuhi S, Christmas S, Neoptolemos JP, Slavin J. Inflammatory mediators in acute pancreatitis. The Journal of pathology. 2000; 190(2): 117-25.10.1002/(SICI)1096-9896(200002)190:2<117::AID-PATH494>3.0.CO;2-KSearch in Google Scholar

7. Noreen M, Shah MA, Mall SM, Choudhary S, Hussain T, Ahmed I, et al. TLR4 polymorphisms and disease susceptibility. Inflammation research: official journal of the European Histamine Research Society [et al]. 2012; 61(3): 177-88.10.1007/s00011-011-0427-1Search in Google Scholar

8. Lucas K, Maes M. Role of the Toll Like receptor (TLR) radical cycle in chronic inflammation: possible treatments targeting the TLR4 pathway. Molecular neurobiology. 2013; 48(1): 190-204.10.1007/s12035-013-8425-7Search in Google Scholar

9. Lin YT, Verma A, Hodgkinson CP. Toll-like receptors and human disease: lessons from single nucleotide polymorphisms. Current genomics. 2012; 13(8): 633-45.10.2174/138920212803759712Search in Google Scholar

10. Beutler B. Innate immunity: an overview. Molecular immunology. 2004; 40(12): 845-59.10.1016/j.molimm.2003.10.005Search in Google Scholar

11. Frantz S, Kobzik L, Kim YD, Fukazawa R, Medzhitov R, Lee RT, et al. Toll4 (TLR4) expression in cardiac myocytes in normal and failing myocardium. The Journal of clinical investigation. 1999; 104(3): 271-80.10.1172/JCI670940842010430608Search in Google Scholar

12. Kielian T. Toll-like receptors in central nervous system glial inflammation and homeostasis. Journal of neuroscience research. 2006; 83(5): 711-30.10.1002/jnr.20767244049816541438Search in Google Scholar

13. Sharif R, Dawra R, Wasiluk K, Phillips P, Dudeja V, Kurt-Jones E, et al. Impact of toll-like receptor 4 on the severity of acute pancreatitis and pancreatitis-associated lung injury in mice. Gut. 2009; 58(6): 813-9.10.1136/gut.2008.17042319201771Search in Google Scholar

14. Li G, Wu X, Yang L, He Y, Liu Y, Jin X, et al. TLR4-mediated NF-kappaB signaling pathway mediates HMGB1-induced pancreatic injury in mice with severe acute pancreatitis. International journal of molecular medicine. 2016; 37(1): 99-107.10.3892/ijmm.2015.2410468743926719855Search in Google Scholar

15. O'Neill LA, Golenbock D, Bowie AG. The history of Toll-like receptors - redefining innate immunity. Nature reviews Immunology. 2013; 13(6): 453-60.10.1038/nri344623681101Search in Google Scholar

16. Park BS, Lee JO. Recognition of lipopolysaccharide pattern by TLR4 complexes. Experimental & molecular medicine. 2013; 45: e66.10.1038/emm.2013.97388046224310172Search in Google Scholar

17. Rallabhandi P, Phillips RL, Boukhvalova MS, Pletneva LM, Shirey KA, Gioannini TL, et al. Respiratory syncytial virus fusion protein-induced toll-like receptor 4 (TLR4) signaling is inhibited by the TLR4 antagonists Rhodobacter sphaeroides lipopolysaccharide and eritoran (E5564) and requires direct interaction with MD-2. mBio. 2012; 3(4).10.1128/mBio.00218-12341952622872782Search in Google Scholar

18. Rolland A, Jouvin-Marche E, Viret C, Faure M, Perron H, Marche PN. The envelope protein of a human endogenous retrovirus-W family activates innate immunity through CD14/TLR4 and promotes Th1-like responses. Journal of immunology (Baltimore, Md : 1950). 2006; 176(12): 7636-44.10.4049/jimmunol.176.12.763616751411Search in Google Scholar

19. Equils O, Lu D, Gatter M, Witkin SS, Bertolotto C, Arditi M, et al. Chlamydia heat shock protein 60 induces trophoblast apoptosis through TLR4. Journal of immunology (Baltimore, Md : 1950). 2006; 177(2): 1257-63.10.4049/jimmunol.177.2.125716818785Search in Google Scholar

20. Sun NK, Huang SL, Chang TC, Chao CC. TLR4 and NFkappaB signaling is critical for taxol resistance in ovarian carcinoma cells. Journal of cellular physiology. 2018; 233(3): 2489-501.10.1002/jcp.2612528771725Search in Google Scholar

21. Burguillos MA, Svensson M, Schulte T, Boza-Serrano A, Garcia-Quintanilla A, Kavanagh E, et al. Microglia-Secreted Galectin-3 Acts as a Toll-like Receptor 4 Ligand and Contributes to Microglial Activation. Cell reports. 2015.10.1016/j.celrep.2015.02.01225753426Search in Google Scholar

22. Schaefer L, Babelova A, Kiss E, Hausser HJ, Baliova M, Krzyzankova M, et al. The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages. The Journal of clinical investigation. 2005; 115(8): 2223-33.10.1172/JCI23755117491616025156Search in Google Scholar

23. Midwood K, Sacre S, Piccinini AM, Inglis J, Trebaul A, Chan E, et al. Tenascin-C is an endogenous activator of Toll-like receptor 4 that is essential for maintaining inflammation in arthritic joint disease. Nat Med. 2009; 15(7): 774-80.10.1038/nm.198719561617Search in Google Scholar

24. Chiron D, Bekeredjian-Ding I, Pellat-Deceunynck C, Bataille R, Jego G. Toll-like receptors: lessons to learn from normal and malignant human B cells. Blood. 2008; 112(6): 2205-13.10.1182/blood-2008-02-140673253279818591383Search in Google Scholar

25. Guillot L, Balloy V, McCormack FX, Golenbock DT, Chignard M, Si-Tahar M. Cutting edge: the immunostimulatory activity of the lung surfactant protein-A involves Toll-like receptor 4. Journal of immunology (Baltimore, Md : 1950). 2002; 168(12): 5989-92.10.4049/jimmunol.168.12.598912055204Search in Google Scholar

26. Biragyn A, Coscia M, Nagashima K, Sanford M, Young HA, Olkhanud P. Murine beta-defensin 2 promotes TLR-4/MyD88-mediated and NF-kappaB-dependent atypical death of APCs via activation of TNFR2. Journal of leukocyte biology. 2008; 83(4): 998-1008.10.1189/jlb.1007700236591718192488Search in Google Scholar

27. Croce K, Gao H, Wang Y, Mooroka T, Sakuma M, Shi C, et al. Myeloid-related protein-8/14 is critical for the biological response to vascular injury. Circulation. 2009; 120(5): 427-36.10.1161/CIRCULATIONAHA.108.814582307039719620505Search in Google Scholar

28. Lehnardt S, Schott E, Trimbuch T, Laubisch D, Krueger C, Wulczyn G, et al. A vicious cycle involving release of heat shock protein 60 from injured cells and activation of toll-like receptor 4 mediates neurodegeneration in the CNS. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2008; 28(10): 2320-31.10.1523/JNEUROSCI.4760-07.2008667117018322079Search in Google Scholar

29. Dybdahl B, Wahba A, Lien E, Flo TH, Waage A, Qureshi N, et al. Inflammatory response after open heart surgery: release of heat-shock protein 70 and signaling through toll-like receptor-4. Circulation. 2002; 105(6): 685-90.10.1161/hc0602.10361711839622Search in Google Scholar

30. Wheeler DS, Chase MA, Senft AP, Poynter SE, Wong HR, Page K. Extracellular Hsp72, an endogenous DAMP, is released by virally infected airway epithelial cells and activates neutrophils via Toll-like receptor (TLR)-4. Respiratory research. 2009; 10: 31.10.1186/1465-9921-10-31267900719405961Search in Google Scholar

31. Roelofs MF, Boelens WC, Joosten LA, Abdollahi-Roodsaz S, Geurts J, Wunderink LU, et al. Identification of small heat shock protein B8 (HSP22) as a novel TLR4 ligand and potential involvement in the pathogenesis of rheumatoid arthritis. Journal of immunology (Baltimore, Md : 1950). 2006; 176(11): 7021-7.10.4049/jimmunol.176.11.702116709864Search in Google Scholar

32. Vabulas RM, Braedel S, Hilf N, Singh-Jasuja H, Herter S, Ahmad-Nejad P, et al. The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via the Toll-like receptor 2/4 pathway. The Journal of biological chemistry. 2002; 277(23): 20847-53.10.1074/jbc.M20042520011912201Search in Google Scholar

33. Okamura Y, Watari M, Jerud ES, Young DW, Ishizaka ST, Rose J, et al. The extra domain A of fibronectin activates Toll-like receptor 4. The Journal of biological chemistry. 2001; 276(13): 10229-33.10.1074/jbc.M10009920011150311Search in Google Scholar

34. Smiley ST, King JA, Hancock WW. Fibrinogen stimulates macrophage chemokine secretion through toll-like receptor 4. Journal of immunology (Baltimore, Md : 1950). 2001; 167(5): 2887-94.10.4049/jimmunol.167.5.288711509636Search in Google Scholar

35. Johnson GB, Brunn GJ, Kodaira Y, Platt JL. Receptor-mediated monitoring of tissue well-being via detection of soluble heparan sulfate by Toll-like receptor 4. Journal of immunology (Baltimore, Md: 1950). 2002; 168(10): 5233-9.10.4049/jimmunol.168.10.523311994480Search in Google Scholar

36. Tang AH, Brunn GJ, Cascalho M, Platt JL. Pivotal advance: endogenous pathway to SIRS, sepsis, and related conditions. Journal of leukocyte biology. 2007; 82(2): 282-5.10.1189/jlb.120675217495051Search in Google Scholar

37. Iwata Y, Yoshizaki A, Komura K, Shimizu K, Ogawa F, Hara T, et al. CD19, a response regulator of B lymphocytes, regulates wound healing through hyaluronan-induced TLR4 signaling. The American journal of pathology. 2009; 175(2): 649-60.10.2353/ajpath.2009.080355271696419574428Search in Google Scholar

38. Liu-Bryan R, Scott P, Sydlaske A, Rose DM, Terkeltaub R. Innate immunity conferred by Toll-like receptors 2 and 4 and myeloid differentiation factor 88 expression is pivotal to monosodium urate monohydrate crystal-induced inflammation. Arthritis and rheumatism. 2005; 52(9): 2936-46.10.1002/art.2123816142712Search in Google Scholar

39. Tarkowski A, Bjersing J, Shestakov A, Bokarewa MI. Resistin competes with lipopolysaccharide for binding to toll-like receptor 4. Journal of cellular and molecular medicine. 2010; 14(6b): 1419-31.10.1111/j.1582-4934.2009.00899.x382900919754671Search in Google Scholar

40. Xie H, Sheng L, Zhou H, Yan J. The role of TLR4 in pathophysiology of antiphospholipid syndrome-associated thrombosis and pregnancy morbidity. British journal of haematology. 2014; 164(2): 165-76.10.1111/bjh.1258724180619Search in Google Scholar

41. Ando K, Hasegawa K, Shindo K, Furusawa T, Fujino T, Kikugawa K, et al. Human lactoferrin activates NF-kappaB through the Toll-like receptor 4 pathway while it interferes with the lipopolysaccharide-stimulated TLR4 signaling. The FEBS journal. 2010; 277(9): 2051-66.10.1111/j.1742-4658.2010.07620.xSearch in Google Scholar

42. Devaney JM, Greene CM, Taggart CC, Carroll TP, O'Neill SJ, McElvaney NG. Neutrophil elastase up-regulates interleukin-8 via toll-like receptor 4. FEBS letters. 2003; 544(1-3): 129-32.10.1016/S0014-5793(03)00482-4Search in Google Scholar

43. Imai Y, Kuba K, Neely GG, Yaghubian-Malhami R, Perkmann T, van Loo G, et al. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell. 2008; 133(2): 235-49.10.1016/j.cell.2008.02.043711233618423196Search in Google Scholar

44. Hirai K, Furusho H, Kawashima N, Xu S, de Beer MC, Battaglino R, et al. Serum Amyloid A Contributes to Chronic Apical Periodontitis via TLR2 and TLR4. Journal of dental research. 2019; 98(1): 117-25.10.1177/0022034518796456630471430189157Search in Google Scholar

45. Perillo NL, Marcus ME, Baum LG. Galectins: versatile modulators of cell adhesion, cell proliferation, and cell death. Journal of molecular medicine (Berlin, Germany). 1998; 76(6): 402-12.10.1007/s0010900502329625297Search in Google Scholar

46. Radosavljevic G.D. PJ, Jovanovic I., Lukic M.L., Arsenijevic N. The two faces of galectin-3: roles in various pathological conditions. Ser J Exp Clin Res. 2016; 17(3): 187-98.10.1515/sjecr-2016-0011Search in Google Scholar

47. Henderson NC, Sethi T. The regulation of inflammation by galectin-3. Immunological reviews. 2009; 230(1): 160-71.10.1111/j.1600-065X.2009.00794.x19594635Search in Google Scholar

48. Dragomir AC, Sun R, Choi H, Laskin JD, Laskin DL. Role of galectin-3 in classical and alternative macrophage activation in the liver following acetaminophen intoxication. Journal of immunology (Baltimore, Md: 1950). 2012; 189(12): 5934-41.10.4049/jimmunol.1201851351865323175698Search in Google Scholar

49. Radosavljevic G, Jovanovic I, Majstorovic I, Mitrovic M, Lisnic VJ, Arsenijevic N, et al. Deletion of galectin-3 in the host attenuates metastasis of murine melanoma by modulating tumor adhesion and NK cell activity. Clinical & experimental metastasis. 2011; 28(5): 451-62.10.1007/s10585-011-9383-y21442355Search in Google Scholar

50. Jiang HR, Al Rasebi Z, Mensah-Brown E, Shahin A, Xu D, Goodyear CS, et al. Galectin-3 deficiency reduces the severity of experimental autoimmune encephalomyelitis. Journal of immunology (Baltimore, Md: 1950). 2009; 182(2): 1167-73.10.4049/jimmunol.182.2.116719124760Search in Google Scholar

51. Volarevic V, Milovanovic M, Ljujic B, Pejnovic N, Arsenijevic N, Nilsson U, et al. Galectin-3 deficiency prevents concanavalin A-induced hepatitis in mice. Hepatology (Baltimore, Md). 2012; 55(6): 1954-64.10.1002/hep.25542Search in Google Scholar

52. Mishra BB, Li Q, Steichen AL, Binstock BJ, Metzger DW, Teale JM, et al. Galectin-3 functions as an alarmin: pathogenic role for sepsis development in murine respiratory tularemia. PloS one. 2013; 8(3): e59616.10.1371/journal.pone.0059616Search in Google Scholar

53. Li Y, Zhou ZG, Xia QJ, Zhang J, Li HG, Cao GQ, et al. Toll-like receptor 4 detected in exocrine pancreas and the change of expression in cerulein-induced pancreatitis. Pancreas. 2005; 30(4): 375-81.10.1097/01.mpa.0000160959.21580.41Search in Google Scholar

54. Hall JC, Crawford HC. The conspiracy of autophagy, stress and inflammation in acute pancreatitis. Current opinion in gastroenterology. 2014; 30(5): 495-9.10.1097/MOG.0000000000000097Search in Google Scholar

55. Gu H, Werner J, Bergmann F, Whitcomb DC, Buchler MW, Fortunato F. Necro-inflammatory response of pancreatic acinar cells in the pathogenesis of acute alcoholic pancreatitis. Cell death & disease. 2013; 4: e816.10.1038/cddis.2013.354Search in Google Scholar

56. Jaffray C, Mendez C, Denham W, Carter G, Norman J. Specific pancreatic enzymes activate macrophages to produce tumor necrosis factor-alpha: role of nuclear factor kappa B and inhibitory kappa B proteins. Journal of gastrointestinal surgery: official journal of the Society for Surgery of the Alimentary Tract. 2000; 4(4): 370-7; discussion 7-8.10.1016/S1091-255X(00)80015-3Search in Google Scholar

57. Jaffray C, Yang J, Carter G, Mendez C, Norman J. Pancreatic elastase activates pulmonary nuclear factor kappa B and inhibitory kappa B, mimicking pancreatitis-associated adult respiratory distress syndrome. Surgery. 2000; 128(2): 225-31.10.1067/msy.2000.10741910922996Search in Google Scholar

58. Hietaranta A, Mustonen H, Puolakkainen P, Haapiainen R, Kemppainen E. Proinflammatory effects of pancreatic elastase are mediated through TLR4 and NF-kappaB. Biochemical and biophysical research communications. 2004; 323(1): 192-6.10.1016/j.bbrc.2004.08.07715351720Search in Google Scholar

59. Vaz J, Akbarshahi H, Andersson R. Controversial role of toll-like receptors in acute pancreatitis. World journal of gastroenterology. 2013; 19(5): 616-30.10.3748/wjg.v19.i5.616357458723431068Search in Google Scholar

60. Johnson GB, Brunn GJ, Platt JL. Cutting edge: an endogenous pathway to systemic inflammatory response syndrome (SIRS)-like reactions through Toll-like receptor 4. Journal of immunology (Baltimore, Md: 1950). 2004; 172(1): 20-4.10.4049/jimmunol.172.1.2014688304Search in Google Scholar

61. Chen X, Zhao HX, Bai C, Zhou XY. Blockade of high-mobility group box 1 attenuates intestinal mucosal barrier dysfunction in experimental acute pancreatitis. Scientific reports. 2017; 7(1): 6799.10.1038/s41598-017-07094-y553373628754974Search in Google Scholar

62. Awla D, Abdulla A, Regner S, Thorlacius H. TLR4 but not TLR2 regulates inflammation and tissue damage in acute pancreatitis induced by retrograde infusion of taurocholate. Inflammation research: official journal of the European Histamine Research Society [et al]. 2011; 60(12): 1093-8.10.1007/s00011-011-0370-121863370Search in Google Scholar

63. Ding SQ, Li Y, Zhou ZG, Wang C, Zhan L, Zhou B. Toll-like receptor 4-mediated apoptosis of pancreatic cells in cerulein-induced acute pancreatitis in mice. Hepatobiliary & pancreatic diseases international: HBPD INT. 2010; 9(6): 645-50.Search in Google Scholar

64. Cao Y, Adhikari S, Clement MV, Wallig M, Bhatia M. Induction of apoptosis by crambene protects mice against acute pancreatitis via anti-inflammatory pathways. The American journal of pathology. 2007; 170(5): 1521-34.10.2353/ajpath.2007.061149185494817456759Search in Google Scholar

65. Sawa H, Ueda T, Takeyama Y, Yasuda T, Shinzeki M, Nakajima T, et al. Role of toll-like receptor 4 in the path-ophysiology of severe acute pancreatitis in mice. Surgery today. 2007; 37(10): 867-73.10.1007/s00595-007-3520-x17879036Search in Google Scholar

66. Deng Y, Yang Z, Gao Y, Xu H, Zheng B, Jiang M, et al. Toll-like receptor 4 mediates acute lung injury induced by high mobility group box-1. PloS one. 2013; 8(5): e64375.10.1371/journal.pone.0064375365683523691208Search in Google Scholar

67. Pan LF, Yu L, Wang LM, He JT, Sun JL, Wang XB, et al. The toll-like receptor 4 antagonist transforming growth factor-beta-activated kinase (TAK)-242 attenuates taurocholate-induced oxidative stress through regulating mitochondrial function in mice pancreatic acinar cells. The Journal of surgical research. 2016; 206(2): 298-306.10.1016/j.jss.2016.08.01127884323Search in Google Scholar

68. Li HG, Zhou ZG, Li Y, Zheng XL, Lei S, Zhu L, et al. Alterations of Toll-like receptor 4 expression on peripheral blood monocytes during the early stage of human acute pancreatitis. Digestive diseases and sciences. 2007; 52(8): 1973-8.10.1007/s10620-006-9211-417415654Search in Google Scholar

69. Gao HK, Zhou ZG, Li Y, Chen YQ. Toll-like receptor 4 Asp299Gly polymorphism is associated with an increased risk of pancreatic necrotic infection in acute pancreatitis: a study in the Chinese population. Pancreas. 2007; 34(3): 295-8.10.1097/mpa.0b013e318032674a17414051Search in Google Scholar

70. Zhang D, Zheng H, Zhou Y, Yu B, Li J. TLR and MBL gene polymorphisms in severe acute pancreatitis. Molecular diagnosis & therapy. 2008; 12(1): 45-50.10.1007/BF0325626718288881Search in Google Scholar

71. Hofner P, Balog A, Gyulai Z, Farkas G, Rakonczay Z, Takacs T, et al. Polymorphism in the IL-8 gene, but not in the TLR4 gene, increases the severity of acute pancreatitis. Pancreatology: official journal of the International Association of Pancreatology (IAP) [et al]. 2006; 6(6): 542-8.10.1159/00009736317124436Search in Google Scholar

72. Guenther A, Aghdassi A, Muddana V, Rau B, Schulz HU, Mayerle J, et al. Toll-like receptor 4 polymorphisms in German and US patients are not associated with occurrence or severity of acute pancreatitis. Gut. 2010; 59(8): 1154-5.10.1136/gut.2009.19249220587548Search in Google Scholar

73. Arbour NC, Lorenz E, Schutte BC, Zabner J, Kline JN, Jones M, et al. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nature genetics. 2000; 25(2): 187-91.10.1038/7604810835634Search in Google Scholar

74. Szabo G, Mandrekar P, Oak S, Mayerle J. Effect of ethanol on inflammatory responses. Implications for pancreatitis. Pancreatology: official journal of the International Association of Pancreatology (IAP) [et al]. 2007; 7(2-3): 115-23.10.1159/000104236279078017592223Search in Google Scholar

75. Chen GY, Nunez G. Sterile inflammation: sensing and reacting to damage. Nature reviews Immunology. 2010; 10(12): 826-37.10.1038/nri2873311442421088683Search in Google Scholar

76. Amith SR, Jayanth P, Franchuk S, Finlay T, Seyrantepe V, Beyaert R, et al. Neu1 desialylation of sialyl alpha-2,3-linked beta-galactosyl residues of TOLL-like receptor 4 is essential for receptor activation and cellular signaling. Cellular signalling. 2010; 22(2): 314-24.10.1016/j.cellsig.2009.09.03819796680Search in Google Scholar

77. Zhou W, Chen X, Hu Q, Chen X, Chen Y, Huang L. Galectin-3 activates TLR4/NF-kappaB signaling to promote lung adenocarcinoma cell proliferation through activating lncRNA-NEAT1 expression. BMC cancer. 2018; 18(1): 580.10.1186/s12885-018-4461-z596491029788922Search in Google Scholar

78. Cai G, Ma X, Chen B, Huang Y, Liu S, Yang H, et al. Galectin-3 induces ovarian cancer cell survival and chemoresistance via TLR4 signaling activation. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine. 2016; 37(9): 11883-91.10.1007/s13277-016-5038-627059733Search in Google Scholar

79. Nishikawa H, Suzuki H. Possible Role of Inflammation and Galectin-3 in Brain Injury after Subarachnoid Hemorrhage. Brain sciences. 2018; 8(2).10.3390/brainsci8020030583604929414883Search in Google Scholar

80. Stojanovic B, Jovanovic I, Stojanovic BS, Stojanovic MD, Gajovic N, Radosavljevic G, et al. Deletion of Galectin-3 attenuates acute pancreatitis in mice by affecting activation of innate inflammatory cells. European journal of immunology. 2019.10.1002/EJI.201847890/v2/response1Search in Google Scholar

81. Pan LL, Deng YY, Wang R, Wu C, Li J, Niu W, et al. Lactose Induces Phenotypic and Functional Changes of Neutrophils and Macrophages to Alleviate Acute Pancreatitis in Mice. Frontiers in immunology. 2018; 9: 751.10.3389/fimmu.2018.00751591328629719535Search in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Medicine, Clinical Medicine, other