Zacytuj

1. Caballero M, Mackers P, Reig O, Buxo E, Navarrete P, Blanch JL, et al. The Role of Audiometry prior to High-Dose Cisplatin in Patients with Head and Neck Cancer. Oncology. 2017;93(2):75-82. doi: 10.1159/000468522.10.1159/00046852228511189Search in Google Scholar

2. Le X, Hanna EY. Optimal regimen of cisplatin in squamous cell carcinoma of head and neck yet to be determined. Ann Transl Med. 2018;6(11):229.10.21037/atm.2018.05.10603600230023392Search in Google Scholar

3. Tepper J, Krasna MJ, Niedzwiecki D, et al. Phase III trial of trimodality therapy with cisplatin, fluorouracil, radiotherapy, and surgery compared with surgery alone for esophageal cancer: CALGB 9781. J Clin Oncol. 2008;26(7):1086-92. doi: 10.1200/JCO.2007.12.959310.1200/JCO.2007.12.9593512664418309943Search in Google Scholar

4. Park JC, Citrin DE, Agarwal PK, Apolo AB. Multi-modal management of muscle-invasive bladder cancer. Curr Probl Cancer. 2014;38(3):80-108. doi: 10.1016/j.currproblcancer.2014.06.00110.1016/j.currproblcancer.2014.06.001419016125087173Search in Google Scholar

5. Chovanec M, Abu Zaid M, Hanna N, El-Kouri N, Ein-horn LH, Albany C. Long-term toxicity of cisplatin in germ-cell tumor survivors. Ann Oncol. 2017;28(11):2670-2679. doi: 10.1093/annonc/mdx36010.1093/annonc/mdx360624672629045502Search in Google Scholar

6. Alberts DS, Liu PY, Hannigan EV, O'Toole R, Williams SD, Young JA, et al. Intraperitoneal cisplatin plus intravenous cyclophosphamide versus intravenous cisplatin plus intravenous cyclophosphamide for stage III ovarian cancer. N Engl J Med. 1996 Dec 26;335(26):1950-5.10.1056/NEJM1996122633526038960474Search in Google Scholar

7. Colombo N, Creutzberg C, Amant F, et al. ESMOESGO-ESTRO Consensus Conference on Endometrial Cancer: Diagnosis, Treatment and Follow-up. Int J Gynecol Cancer. 2015;26(1):2-30. doi: 10.1097/IGC.000000000000060910.1097/IGC.0000000000000609467934426645990Search in Google Scholar

8. Rose PG, Bundy BN, Watkins EB, Thigpen JT, Deppe G, Maiman MA, et al. Concurrent cisplatin-based radiotherapy and chemotherapy for locally advanced cervical cancer. N Engl J Med. 1999 Apr 15;340(15):1144-53.DOI: 10.1056/NEJM19990415340150210.1056/NEJM19990415340150210202165Search in Google Scholar

9. Islam SS, Al-Sharif I, Sultan A, Al-Mazrou A, Remmal A, Aboussekhra A. Eugenol potentiates cisplatin anti-cancer activity through inhibition of ALDH-positive breast cancer stem cells and the NF-κB signaling pathway. Mol Carcinog. 2018 Mar;57(3):333-346. doi: 10.1002/mc.22758.10.1002/mc.2275829073729Search in Google Scholar

10. Orditura M, Galizia G, Sforza V, et al. Treatment of gastric cancer. World J Gastroenterol. 2014;20(7):1635-49. doi: 10.3748/wjg.v20.i7.163510.3748/wjg.v20.i7.1635393096424587643Search in Google Scholar

11. Fennell DA, Summers Y, Cadranel J, Benepal T, Christoph DC, Lal R, et al. Cisplatin in the modern era: The backbone of first-line chemotherapy for non-small cell lung cancer. Cancer Treat Rev. 2016 Mar;44:42-50. doi: 10.1016/j.ctrv.2016.01.003.10.1016/j.ctrv.2016.01.00326866673Search in Google Scholar

12. Li H, Wang H, Deng K, Han W, Hong B, Lin W. The ratio of Bcl-2/Bim as a predictor of cisplatin response provides a rational combination of ABT-263 with cisplatin or radiation in small cell lung cancer. Cancer Biomark. 2018 Dec 25. doi: 10.3233/CBM-181692.10.3233/CBM-18169230614795Search in Google Scholar

13. Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol. 2014 Oct 5; 0: 364–378. doi: 10.1016/j.ejphar.2014.07.02510.1016/j.ejphar.2014.07.025414668425058905Search in Google Scholar

14. Hartmann JT, Lipp HP. Toxicity of platinum compounds. Expert Opin Pharmacother. 2003 Jun;4(6):889-901. doi: 10.1517/14656566.4.6.88910.1517/14656566.4.6.88912783586Search in Google Scholar

15. Kobayashi R, Suzuki A, Matsuura K, Yamada N, Nakano M, Deguchi T, et al. Risk analysis for cisplatin-induced nephrotoxicity during first cycle of chemotherapy. Int J Clin Exp Med. 2016;9(2):3635–41.Search in Google Scholar

16. Tucker BM, Perazella MA. Medications. In: Lerma EV, Sparks MA, and Topf J. Nephrology Secrets. 4th ed. Philadelphia, PA:Elsevier;2018. p.78–83.10.1016/B978-0-323-47871-7.00019-8Search in Google Scholar

17. Perazella MA. Onco-Nephrology: Renal Toxicities of Chemotherapeutic Agents. Clin J Am Soc Nephrol. 2012 Oct;7(10):1713-21. doi: 10.2215/CJN.02780312.10.2215/CJN.0278031222879440Search in Google Scholar

18. Pabla N, Dong Z. Cisplatin nephrotoxicity: Mechanisms and renoprotective strategies. Kidney Int. 2008 May;73(9):994-1007. doi: 10.1038/sj.ki.500278610.1038/sj.ki.500278618272962Search in Google Scholar

19. Dos Santos NA, Carvalho Rodrigues MA, Martins NM, dos Santos AC. Cisplatin-induced nephrotoxicity and targets of nephroprotection: an update. Arch Toxicol. 2012 Aug;86(8):1233-50. doi: 10.1007/s00204-012-0821-710.1007/s00204-012-0821-722382776Search in Google Scholar

20. Miller RP, Tadagavadi RK, Ramesh G, Reeves WB. Mechanisms of Cisplatin nephrotoxicity.Toxins (Basel). 2010 Nov;2(11):2490-518. doi: 10.3390/toxins2112490.10.3390/toxins2112490315317422069563Search in Google Scholar

21. Yao X, Panichpisal K, Kurtzman N, Nugent K. Cisplatin Nephrotoxicity: A Review. Am J Med Sci. 2007 Aug;334(2):115-24. doi: 10.1097/MAJ.0b013e31812dfe1e10.1097/MAJ.0b013e31812dfe1e17700201Search in Google Scholar

22. Bolisetty S, Traylor A, Joseph R, Zarjou A, Agarwal A. Proximal tubule-targeted heme oxygenase-1 in cisplatin-induced acute kidney injury. Am J Physiol Renal Physiol. 2016 Mar 1; 310(5): F385–F394. doi:10.1152/ajprenal.00335.2015.10.1152/ajprenal.00335.2015486837026672618Search in Google Scholar

23. Ciarimboli G. Membrane Transporters as Mediators of Cisplatin Side Effects. Anticancer Res. 2014 Jan;34(1):547-50.Search in Google Scholar

24. Pabla N, Murphy RF, Liu K, Dong Z. The copper transporter Ctr1 contributes to cisplatin uptake by renal tubular cells during cisplatin nephrotoxicity. Am J Physiol Renal Physiol. 2009 Mar;296(3):F505-11. doi: 10.1152/ajprenal.90545.2008.10.1152/ajprenal.90545.2008266019019144690Search in Google Scholar

25. Filipski KK, Mathijssen RH, Mikkelsen TS, Schinkel AH, Sparreboom A. Contribution of organic cation transporter 2 (OCT2) to cisplatin-induced nephrotoxi-city. Clin Pharmacol Ther. 2009 Oct;86(4):396-402. doi: 10.1038/clpt.2009.139.10.1038/clpt.2009.139274686619625999Search in Google Scholar

26. Ciarimboli G, Deuster D, Knief A, et al. Organic Cation Transporter 2 Mediates Cisplatin-Induced Oto- and Nephrotoxicity and Is a Target for Protective Interventions. Am J Pathol. 2010 Mar; 176(3): 1169–1180. doi: 10.2353/ajpath.2010.090610.10.2353/ajpath.2010.090610283214020110413Search in Google Scholar

27. Townsend DM, Deng M, Zhang L, Lapus MG, Hanigan MH. Metabolism of Cisplatin to a nephrotoxin in proximal tubule cells.J Am Soc Nephrol. 2003 Jan;14(1):1-10.10.1097/01.ASN.0000042803.28024.92636114812506132Search in Google Scholar

28. Basu A, Krishnamurthy S. Cellular responses to cisplatin-induced DNA damage. J Nucleic Acids. 2010 Aug 8;2010. pii: 201367. doi: 10.4061/2010/201367.10.4061/2010/201367292960620811617Search in Google Scholar

29. Price PM, Safirstein RL, Megyesi J. Protection of renal cells from cisplatin toxicity by cell cycle inhibitors. Am J Physiol Renal Physiol. 2004 Feb;286(2):F378-84. doi: 10.1152/ajprenal.00192.200310.1152/ajprenal.00192.200312965891Search in Google Scholar

30. Megyesi J, Safirstein RL, Price PM. Induction of p21WAF1/CIP1/SDI1 in kidney tubule cells affects the course of cisplatin-induced acute renal failure. J Clin Invest. 1998 Feb 15; 101(4): 777–782. doi: 10.1172/JCI1497.10.1172/JCI14975086259466972Search in Google Scholar

31. Zhou H, Kato A, Yasuda H, Miyaji T, Fujigaki Y, Yamamoto T, et al. The induction of cell cycle regulatory and DNA repair proteins in cisplatin-induced acute renal failure. Toxicol Appl Pharmacol. 2004 Oct 15;200(2):111-20. doi: 10.1016/j.taap.2004.04.00310.1016/j.taap.2004.04.00315476864Search in Google Scholar

32. Price PM, Yu F, Kaldis P, et al. Dependence of Cisplatin-Induced Cell Death In Vitro and In Vivo on Cyclin-Dependent Kinase 2. J Am Soc Nephrol. 2006 Sep;17(9):2434-42. Epub 2006 Aug 16. doi: 10.1681/ASN.2006020162.10.1681/ASN.2006020162169829116914540Search in Google Scholar

33. Siddik Z. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene. 2003 Oct 20;22(47):7265-79. doi: 10.1038/sj.onc.1206933.10.1038/sj.onc.1206933Search in Google Scholar

34. Anderson B, Murray D. Clinically relevant resistance in cancer chemotherapy. Dordrecht : Kluwer Academic Publishers; 2002.10.1007/978-1-4615-1173-1Search in Google Scholar

35. Schieber M, Chandel NS. ROS Function in Redox Signaling and Oxidative Stress. Curr Biol. 2014 May 19;24(10):R453-62. doi: 10.1016/j.cub.2014.03.034.10.1016/j.cub.2014.03.034Search in Google Scholar

36. Baliga R, Zhang Z, Baliga M, Ueda N, Shah SV. Role of cytochrome P-450 as a source of catalytic iron in cisplatin-induced nephrotoxicity. Kidney Int. 1998 Nov;54(5):1562-9. doi: 10.1046/j.1523-1755.1998.00161.x10.1046/j.1523-1755.1998.00161.xSearch in Google Scholar

37. Kruidering M, Van de Water B, de Heer E, Mulder GJ, Nagelkerke J. Cisplatin-induced nephrotoxicity in porcine proximal tubular cells: mitochondrial dysfunction by inhibition of complexes I to IV of the respiratory chain.J Pharmacol Exp Ther. 1997 Feb;280(2):638-49.Search in Google Scholar

38. Durak I, Ozbek H, Karaayvaz M, Oztürk HS. Cisplatin induces acute renal failure by impairing antioxidant system in guinea pigs: effects of antioxidant supplementation on the cisplatin nephrotoxicity.Drug Chem Toxicol. 2002 Feb;25(1):1-8. doi:10.1081/DCT-10010846810.1081/DCT-100108468Search in Google Scholar

39. Appenroth D, Fröb S, Kersten L, Splinter FK, Winnefeld K. Protective effects of vitamin E and C on cisplatin nephrotoxicity in developing rats. Arch Toxicol. 1997;71(11):677-83.10.1007/s002040050444Search in Google Scholar

40. Davis CA, Nick HS, Agarwal A. Manganese superoxide dismutase attenuates Cisplatin-induced renal injury: importance of superoxide. J Am Soc Nephrol. 2001 Dec;12(12):2683-90.10.1681/ASN.V12122683Search in Google Scholar

41. Yildirim Z, Sogut S, Odaci E, Iraz M, Ozyurt H, Kotuk M, Akyol O. Oral erdosteine administration attenuates cisplatin-induced renal tubular damage in rats. Pharmacol Res. 2003 Feb;47(2):149-56.10.1016/S1043-6618(02)00282-7Search in Google Scholar

42. Ozkok A, Edelstein CL. Pathophysiology of cisplatin-induced acute kidney injury. Biomed Res Int. 2014;2014:967826. doi: 10.1155/2014/967826.10.1155/2014/967826Search in Google Scholar

43. Lee RH, Song JM, Park MY, Kang SK, Kim YK, Jung JS. Cisplatin-induced apoptosis by translocation of endogenous Bax in mouse collecting duct cells. Biochem Pharmacol. 2001 Oct 15;62(8):1013-23.10.1016/S0006-2952(01)00748-1Search in Google Scholar

44. Wei Q, Dong G, Franklin J, Dong Z. The pathological role of Bax in cisplatin nephrotoxicity. Kidney Int. 2007 Jul;72(1):53-62. doi: 10.1038/sj.ki.500225610.1038/sj.ki.500225617410096Search in Google Scholar

45. Seth R, Yang C, Kaushal V, Shah SV, Kaushal GP. p53-dependent caspase-2 activation in mitochondrial release of apoptosis-inducing factor and its role in renal tubular epithelial cell injury.J Biol Chem. 2005 Sep 2;280(35):31230-9. doi: 10.1074/jbc.M50330520010.1074/jbc.M50330520015983031Search in Google Scholar

46. Yin X, Apostolov EO, Shah SV, Wang X, Bogdanov KV, Buzder T, et al. Induction of renal endonuclease G by cisplatin is reduced in DNase I-deficient mice. J Am Soc Nephrol. 2007 Sep;18(9):2544-53. doi: 10.1681/ASN.200608089610.1681/ASN.200608089617675668Search in Google Scholar

47. Kaushal GP, Kaushal V, Hong X, Shah SV. Role and regulation of activation of caspases in cisplatin-induced injury to renal tubular epithelial cells. Kidney Int. 2001 Nov;60(5):1726-36. doi: 10.1046/j.1523-1755.2001.00026.x10.1046/j.1523-1755.2001.00026.x11703590Search in Google Scholar

48. Cummings BS, McHowat J, Schnellmann RG. Role of an endoplasmic reticulum Ca2+-independent phospholipase A2 in cisplatin-induced renal cell apoptosis. J Pharmacol Exp Ther. 2004 Mar;308(3):921-8. doi: 10.1124/jpet.103.06054110.1124/jpet.103.06054114634037Search in Google Scholar

49. Liu H, Baliga R. Endoplasmic reticulum stress-associated caspase 12 mediates cisplatin-induced LLC-PK1 cell apoptosis. J Am Soc Nephrol. 2005 Jul;16(7):1985-92. doi: 10.1681/ASN.200409076810.1681/ASN.200409076815901768Search in Google Scholar

50. Boyce M, Yuan J. Cellular response to endoplasmic reticulum stress: a matter of life or death. Cell Death Differ. 2006 Mar;13(3):363-73. doi: 10.1038/sj.cdd.440181710.1038/sj.cdd.440181716397583Search in Google Scholar

51. Arany I, Megyesi JK, Kaneto H, Price PM, Safirstein RL. Cisplatin-induced cell death is EGFR/src/ERK signaling dependent in mouse proximal tubule cells. Am J Physiol Renal Physiol. 2004 Sep;287(3):F543-9. doi: 10.1152/ajprenal.00112.200410.1152/ajprenal.00112.200415149969Search in Google Scholar

52. Clark JS, Faisal A, Baliga R, Nagamine Y, Arany I. Cisplatin induces apoptosis through the ERK-p66shc pathway in renal proximal tubule cells. Cancer Lett. 2010 Nov 28;297(2):165-70. doi: 10.1016/j.canlet.2010.05.00710.1016/j.canlet.2010.05.00720547441Search in Google Scholar

53. Jiang M, Dong Z. Regulation and pathological role of p53 in cisplatin nephrotoxicity.J Pharmacol Exp Ther. 2008 Nov;327(2):300-7. doi: 10.1124/jpet.108.13916210.1124/jpet.108.13916218682572Search in Google Scholar

54. Jiang M, Wei Q, Wang J, Du Q, Yu J, Zhang L, Dong Z. Regulation of PUMA-alpha by p53 in cisplatin-induced renal cell apoptosis. Oncogene. 2006 Jul 6;25(29):4056-66. doi: 10.1038/sj.onc.120944010.1038/sj.onc.120944016491117Search in Google Scholar

55. Han X, Yue J, Chesney RW. Functional TauT protects against acute kidney injury.J Am Soc Nephrol. 2009 Jun;20(6):1323-32. doi: 10.1681/ASN.200805046510.1681/ASN.2008050465268991019423693Search in Google Scholar

56. Periyasamy-Thandavan S, Jiang M, Wei Q, Smith R, Yin XM, Dong Z. Autophagy is cytoprotective during cisplatin injury of renal proximal tubular cells. Kidney Int. 2008 Sep;74(5):631-40. doi: 10.1038/ki.2008.21410.1038/ki.2008.21418509315Search in Google Scholar

57. Kaushal GP, Shah SV. Autophagy in acute kidney injury.Kidney Int. 2016 Apr;89(4):779-91. doi: 10.1016/j.kint.2015.11.021.10.1016/j.kint.2015.11.021480175526924060Search in Google Scholar

58. Takahashi A, Kimura T, Takabatake Y, Namba T, Kaimori J, Kitamura H, et al. Autophagy guards against cisplatin-induced acute kidney injury. Am J Pathol. 2012 Feb;180(2):517-25. doi: 10.1016/j.aj-path.2011.11.00110.1016/j.ajpath.2011.11.001Search in Google Scholar

59. Yang C, Kaushal V, Shah SV, Kaushal GP. Autophagy is associated with apoptosis in cisplatin injury to renal tubular epithelial cells. Am J Physiol Renal Physiol. 2008 Apr;294(4):F777-87. doi: 10.1152/ajprenal.00590.200710.1152/ajprenal.00590.200718256309Search in Google Scholar

60. Jiang M, Wei Q, Dong G, Komatsu M, Su Y, Dong Z. Autophagy in proximal tubules protects against acute kidney injury. Kidney international. 2012;82(12):1271-1283. doi:10.1038/ki.2012.26110.1038/ki.2012.261349116722854643Search in Google Scholar

61. Inoue K, Kuwana H, Shimamura Y, Ogata K, Taniguchi Y, Kagawa T, et al. Cisplatin-induced macroautophagy occurs prior to apoptosis in proximal tubules in vivo. Clin Exp Nephrol. 2010 Apr;14(2):112-22. doi: 10.1007/s10157-009-0254-710.1007/s10157-009-0254-720013139Search in Google Scholar

62. Jiang M, Dong Z. Self-eating for death or survival during cisplatin nephrotoxicity?Clin Exp Nephrol. 2010 Oct;14(5):516-7. doi: 10.1007/s10157-010-0324-x.10.1007/s10157-010-0324-x20700622Search in Google Scholar

63. Anders HJ. Necroptosis in Acute Kidney Injury.Nephron. 2018;139(4):342-348. doi: 10.1159/000489940.10.1159/00048994029852497Search in Google Scholar

64. Tristao VR, Goncalves PF, Dalboni MA, Batista MC, Durao Mde S Jr., Monte JC. Nec-1 protects against nonapoptotic cell death in cisplatin-induced kidney injury. Ren Fail. 2012;34(3):373-7. doi: 10.3109/0886022X.2011.647343.10.3109/0886022X.2011.64734322260305Search in Google Scholar

65. Ramesh G, Reeves WB. TNF-alpha mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity. J Clin Invest. 2002 Sep;110(6):835-42. doi: 10.1172/JCI1560610.1172/JCI15606Search in Google Scholar

66. Liu M, Chien CC, Burne-Taney M, Molls RR, Racusen LC, Colvin RB, et al. A pathophysiologic role for T lymphocytes in murine acute cisplatin nephrotoxicity. J Am Soc Nephrol. 2006 Mar;17(3):765-74. doi: 10.1681/ASN.200501010210.1681/ASN.2005010102Search in Google Scholar

67. Cenedeze MA, Gonçalves GM, Feitoza CQ, Wang PM, Damião MJ, Bertocchi AP, et al. The role of toll-like receptor 4 in cisplatin-induced renal injury. Transplant Proc. 2007 Mar;39(2):409-11. doi: 10.1016/j.transproceed.2007.01.03210.1016/j.transproceed.2007.01.032Search in Google Scholar

68. Zhang B, Ramesh G, Uematsu S, Akira S, Reeves WB. TLR4 signaling mediates inflammation and tissue injury in nephrotoxicity.J Am Soc Nephrol. 2008 May;19(5):923-32. doi: 10.1681/ASN.2007090982.10.1681/ASN.2007090982Search in Google Scholar

69. Chan AJ, Alikhan MA, Odobasic D, Gan PY, Khouri MB, Steinmetz OM, et al. Innate IL-17A-producing leukocytes promote acute kidney injury via inflammasome and Toll-like receptor activation.Am J Pathol. 2014 May;184(5):1411-8. doi: 10.1016/j.aj-path.2014.01.023.10.1016/j.ajpath.2014.01.023Search in Google Scholar

70. Dong Z, Atherton SS. Tumor necrosis factor-alpha in cisplatin nephrotoxicity: a homebred foe? Kidney Int. 2007 Jul;72(1):5-7. doi: 10.1038/sj.ki.500232010.1038/sj.ki.5002320Search in Google Scholar

71. Locksley RM, Killeen N, Lenardo MJ.The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell. 2001 Feb 23;104(4):487-501. doi: 10.1016/S0092-8674(01)00237-910.1016/S0092-8674(01)00237-9Search in Google Scholar

72. Ramesh G, Reeves WB. TNFR2-mediated apoptosis and necrosis in cisplatin-induced acute renal failure. Am J Physiol Renal Physiol. 2003 Oct;285(4):F610-8. doi: 10.1152/ajprenal.00101.200310.1152/ajprenal.00101.200312865254Search in Google Scholar

73. Ramesh G, Reeves WB. p38 MAP kinase inhibition ameliorates cisplatin nephrotoxicity in mice. Am J Physiol Renal Physiol. 2005 Jul;289(1):F166-74. doi: 10.1152/ajprenal.00401.200410.1152/ajprenal.00401.200415701814Search in Google Scholar

74. Ramesh G, Reeves WB. Cisplatin increases TNF-alpha mRNA stability in kidney proximal tubule cells. Ren Fail. 2006;28(7):583-92. doi: 10.1080/0886022060084383910.1080/0886022060084383917050242Search in Google Scholar

75. Ramesh G, Zhang B, Uematsu S, Akira S, Reeves WB. Endotoxin and cisplatin synergistically induce renal dysfunction and cytokine production in mice. Am J Physiol Renal Physiol. 2007 Jul;293(1):F325-32. doi: 10.1152/ajprenal.00158.200710.1152/ajprenal.00158.200717494092Search in Google Scholar

76. Zhang B, Ramesh G, Norbury CC, Reeves WB. Cisplatin-induced nephrotoxicity is mediated by tumor necrosis factor-alpha produced by renal parenchymal cells. Kidney Int. 2007 Jul;72(1):37-44. doi: 10.1038/sj.ki.500224210.1038/sj.ki.500224217396112Search in Google Scholar

77. Kelly KJ, Meehan SM, Colvin RB, Williams WW, Bonventre JV. Protection from toxicant-mediated renal injury in the rat with anti-CD54 antibody. Kidney Int. 1999 Sep;56(3):922-31. doi: 10.1046/j.1523-1755.1999.00629.x10.1046/j.1523-1755.1999.00629.x10469360Search in Google Scholar

78. Tadagavadi RK, Reeves WB. Endogenous IL-10 attenuates cisplatin nephrotoxicity: role of dendritic cells. J Immunol. 2010 Oct 15;185(8):4904-11. doi: 10.4049/jimmunol.100038310.4049/jimmunol.1000383316990820844196Search in Google Scholar

79. Akcay A, Nguyen Q, He Z, et al. IL-33 Exacerbates Acute Kidney Injury.J Am Soc Nephrol. 2011 Nov; 22(11): 2057–2067. doi: 10.1681/ASN.201009101110.1681/ASN.2010091011327999821949094Search in Google Scholar

80. Deng J, Kohda Y, Chiao H, Wang Y, Hu X, Hewitt SM, et al. Interleukin-10 inhibits ischemic and cisplatin-induced acute renal injury. Kidney Int. 2001 Dec;60(6):2118-28. doi: 10.1046/j.1523-1755.2001.00043.x10.1046/j.1523-1755.2001.00043.x11737586Search in Google Scholar

81. Kim H, Lee H, Lee G, Jang H, Kim SS, Yoon H, et al. Phospholipase A2 inhibits cisplatin-induced acute kidney injury by modulating regulatory T cells by the CD206 mannose receptor. Kidney Int. 2015 Sep;88(3):550-9. doi: 10.1038/ki.2015.147.10.1038/ki.2015.14725993317Search in Google Scholar

82. Summers SA, Chan J, Gan P-Y, et al. Mast Cells Mediate Acute Kidney Injury through the Production of TNF. J Am Soc Nephrol. 2011 Dec; 22(12): 2226–2236. doi: 10.1681/ASN.2011020182.10.1681/ASN.2011020182327993422021718Search in Google Scholar

83. Wang Y, Thorlacius H. Mast cell-derived tumour necrosis factor-alpha mediates macrophage inflammatory protein-2-induced recruitment of neutrophils in mice. Br J Pharmacol. 2005 Aug;145(8):1062-8. doi: 10.1038/sj.bjp.070627410.1038/sj.bjp.0706274157622415937521Search in Google Scholar

84. Faubel S, Lewis EC, Reznikov L, Ljubanovic D, Hoke TS, Somerset H, et al. Cisplatin-induced acute renal failure is associated with an increase in the cytokines interleukin (IL)-1beta, IL-18, IL-6, and neutrophil infiltration in the kidney. J Pharmacol Exp Ther. 2007 Jul;322(1):8-15. doi: 10.1124/jpet.107.11979210.1124/jpet.107.11979217400889Search in Google Scholar

85. Faubel S, Ljubanovic D, Reznikov L, Somerset H, Dinarello CA, Edelstein CL. Caspase-1-deficient mice are protected against cisplatin-induced apoptosis and acute tubular necrosis.Kidney Int. 2004 Dec;66(6):2202-13. doi: 10.1111/j.1523-1755.2004.66010.x10.1111/j.1523-1755.2004.66010.x15569309Search in Google Scholar

86. Tadagavadi R, Reeves WB. Neutrophils in cisplatin AKI-mediator or marker? Kidney Int. 2017 Jul;92(1):11-13. doi: 10.1016/j.kint.2017.03.023.10.1016/j.kint.2017.03.02328646989Search in Google Scholar

87. Ramesh G, Reeves WB. Salicylate reduces cisplatin nephrotoxicity by inhibition of tumor necrosis factor-alpha.Kidney Int. 2004 Feb;65(2):490-9. doi: 10.1111/j.1523-1755.2004.00413.x10.1111/j.1523-1755.2004.00413.x14717919Search in Google Scholar

88. Tadagavadi RK, Gao G, Wang WW, Gonzalez MR, Reeves WB. Dendritic Cell Protection from Cisplatin Nephrotoxicity Is Independent of Neutrophils. Toxins (Basel). 2015 Aug 19;7(8):3245-56. doi: 10.3390/toxins7083245.10.3390/toxins7083245454974826295408Search in Google Scholar

89. Tarang S, Sodhi A, Chauhan P. Differential expression of Toll-like receptors in murine peritoneal macrophages in vitro on treatment with cisplatin.Int Immunol. 2007 May;19(5):635-43. doi: 10.1093/intimm/dxm02910.1093/intimm/dxm02917446211Search in Google Scholar

90. Inoue T. M1 macrophage triggered by Mincle leads to a deterioration of acute kidney injury. Kidney Int. 2017 Mar;91(3):526-529. doi: 10.1016/j.kint.2016.11.026.10.1016/j.kint.2016.11.02628202166Search in Google Scholar

91. Li J, Tang Y, Tang PMK, Lv J, Huang XR, Carlsson-Skwirut C, et al. Blocking Macrophage Migration Inhibitory Factor Protects Against Cisplatin-Induced Acute Kidney Injury in Mice. Mol Ther. 2018 Oct 3;26(10):2523-2532. doi: 10.1016/j.ymthe.2018.07.014.10.1016/j.ymthe.2018.07.014617107530077612Search in Google Scholar

92. Jang HR, Rabb H. Immune cells in experimental acute kidney injury. Nat Rev Nephrol. 2015 Feb;11(2):88-101. doi: 10.1038/nrneph.2014.180.10.1038/nrneph.2014.18025331787Search in Google Scholar

93. Nozaki Y, Nikolic-Paterson DJ, Yagita H, Akiba H, Holdsworth SR, Kitching AR. Tim-1 promotes cisplatin nephrotoxicity.Am J Physiol Renal Physiol. 2011 Nov;301(5):F1098-104. doi: 10.1152/ajprenal.00193.2011.10.1152/ajprenal.00193.201121835770Search in Google Scholar

94. Tadagavadi RK, Reeves WB. Renal Dendritic Cells Ameliorate Nephrotoxic Acute Kidney Injury. J Am Soc Nephrol. 2010 Jan; 21(1): 53–63. doi: 10.1681/ASN.200904040710.1681/ASN.2009040407279927219875815Search in Google Scholar

95. Okusa MD, Li L. Dendritic Cells in Acute Kidney Injury: Cues from the Microenvironment. Trans Am Clin Climatol Assoc. 2012; 123: 54–63.Search in Google Scholar

96. Lee H, Nho D, Chung HS, Lee H, Shin MK, Kim SH, et al. CD4+CD25+ regulatory T cells attenuate cisplatin-induced nephrotoxicity in mice. Kidney Int. 2010 Dec;78(11):1100-9. doi: 10.1038/ki.2010.139.10.1038/ki.2010.13920463654Search in Google Scholar

97. Portilla D, Safar AM, Shannon MI, et al. Cisplatin nephrotoxicity. https://www.uptodate.com/cisplatin_nephrotoxicity. Date last accessed: January 5, 2019. Date last updated: Feb 14, 2018.Search in Google Scholar

98. Glezerman IG, Jaimes EA. Chapter 11. Chemotherapy and Kidney Injury. Αmerican Society of Nephrology Onco-Nephrology Curriculum [Internet]. 2016 [cited 2019 Jan 05]. p. 1–10. Available from: https://www.asn-online.org/education/distancelearning/curricula/onco/Chapter11.pdfSearch in Google Scholar

99. Lajer H, Daugaard G. Cisplatin and hypomagnesemia. Cancer Treat Rev. 1999 Feb;25(1):47-58. doi: 10.1053/ctrv.1999.009710.1053/ctrv.1999.009710212589Search in Google Scholar

100. Hutchison FN, Perez EA, Gandara DR, Lawrence HJ, Kaysen GA. Renal salt wasting in patients treated with cisplatin. Ann Intern Med. 1988 Jan;108(1):21-5.10.7326/0003-4819-108-1-213337511Search in Google Scholar

101. Hamdi T, Latta S, Jallad B, Kheir F, Alhosaini MN, Patel A. Cisplatin-induced renal salt wasting syndrome. South Med J. 2010 Aug;103(8):793-9. doi: 10.1097/SMJ.0b013e3181e63682.10.1097/SMJ.0b013e3181e6368220622742Search in Google Scholar

102. Hall AM, Bass P, Unwin RJ. Drug-induced renal Fanconi syndrome. QJM. 2014 Apr;107(4):261-9. doi: 10.1093/qjmed/hct258.10.1093/qjmed/hct25824368854Search in Google Scholar

103. Sirac C, Bridoux F, Essig M, Devuyst O, Touchard G, Cogné M. Toward understanding renal Fanconi syndrome: step by step advances through experimental models. Contrib Nephrol. 2011;169:247-61. doi: 10.1159/00031396210.1159/00031396221252524Search in Google Scholar

104. Wood PA, Hrushesky WJ. Cisplatin-associated anemia: an erythropoietin deficiency syndrome. J Clin Invest. 1995 Apr;95(4):1650-9. doi: 10.1172/JCI11784010.1172/JCI1178402956697706473Search in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Medicine, Clinical Medicine, other