Zacytuj

1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer 3 statistics, 2012.CA Cancer J Clin 2015;65:87-108.10.3322/caac.21262Search in Google Scholar

2. Guinney J, Dienstmann R, Wang X, et al. The consensus molecular subtypes of colorectal cancer. Nat Med 2015;21:1350-1356.10.1038/nm.3967Search in Google Scholar

3. Jiang Q, Ma L, Li R, Sun J. Colon cancer-induced interleukin-35 inhibits beta-catenin-mediated pro-oncogenic activity. Oncotarget 2017;9:11989-1199810.18632/oncotarget.22857Search in Google Scholar

4. Zou S, Fang L, Lee MH. Dysbiosis of gut microbiota in promoting the development of colorectal cancer. Gastroenterol Rep (Oxf) 2018;6:1-12.10.1093/gastro/gox031Search in Google Scholar

5. Zou S, Fang L, Lee MH. Epithelial Smad4 Deletion Up-Regulates Inflammation and Promotes Inflammation-Associated Cancer. Cell Mol Gastroenterol Hepatol 2018;6:257-276.10.1016/j.jcmgh.2018.05.006Search in Google Scholar

6. Garlanda C, Dinarello CA, Mantovani A. The interleukin-1 family: back to the future. Immunity 2013;39:1003-1018.10.1016/j.immuni.2013.11.010Search in Google Scholar

7. Günther S, Deredge D, Bowers AL, Luchini A, Bonsor DA, Beadenkopf R, Liotta L, Wintrode PL, Sundberg EJ. IL-1 Family Cytokines Use Distinct Molecular Mechanisms to Signal through Their Shared Co-receptor. Immunity 2017;47:510-523.10.1016/j.immuni.2017.08.004Search in Google Scholar

8. Wasmer M-H, Krebs P. The Role of IL-33-Dependent Inflammation in the Tumor Microenvironment. Frontiers in Immunology 2016;7:682.10.3389/fimmu.2016.00682Search in Google Scholar

9. Ali S, Mohs A, Thomas M, Klare J, Ross R, Schmitz ML, Martin MU. The dual function cytokine IL-33 interacts with the transcription factor NF-κB to dampen NF-κB-stimulated gene transcription. J Immunol 2011;187:1609-1616.10.4049/jimmunol.1003080Search in Google Scholar

10. Yao Z, Fanslow WC, Seldin MF, Rousseau AM, Painter SL, Comeau MR, Cohen JI, Spriggs MK. Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity 1995;3:811-821.10.1016/1074-7613(95)90070-5Search in Google Scholar

11. Hymowitz SG, Filvaroff EH, Yin JP, Lee J, Cai L, Risser P, Maruoka M, Mao W, Foster J, Kelley RF, Pan G, Gurney AL, de Vos AM, Starovasnik MA. IL-17s adopt a cystine knot fold: structure and activity of a novel cytokine, IL-17F, and implications for receptor binding. EMBO J. 2001;20:5332-5341.10.1093/emboj/20.19.533212564611574464Search in Google Scholar

12. Moseley TA, Haudenschild DR, Rose L, Reddi AH. Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev 2003;14:155-174.10.1016/S1359-6101(03)00002-9Search in Google Scholar

13. Gaffen SL. Biology of recently discovered cytokines: interleukin-17--a unique inflammatory cytokine with roles in bone biology and arthritis. Arthritis Res Ther 2004;6:240-247.10.1186/ar1444Search in Google Scholar

14. Michel ML, Mendes-da-Cruz D, Keller AC, Lochner M, Schneider E, Dy M, Eberl G, Leite-de-Moraes MC. Critical role of ROR-γt in a new thymic pathway leading to IL-17-producing invariant NKT cell differentiation. Proc Natl Acad Sci U S A 2008;105:19845-51980.10.1073/pnas.0806472105Search in Google Scholar

15. Ciric B, El-behi M, Cabrera R, Zhang GX, Rostami A. IL-23 drives pathogenic IL-17-producing CD8+ T cells. J Immunol 2009;182:5296-5305.10.4049/jimmunol.0900036Search in Google Scholar

16. O’Brien RL, Roark CL, Born WK. IL-17-producing gammadelta T cells. Eur J Immunol 2009;39:662-666.10.1002/eji.200839120Search in Google Scholar

17. Jovanovic M, Gajovic N, Zdravkovic N, Jovanovic M, Jurisevic M, Vojvodic D, Maric V, Arsenijevic A, Jovanovic I. Fecal Galectin-3: A New Promising Biomarker for Severity and Progression of Colorectal Carcinoma. Mediators Inflamm 2018;2018:8031328.10.1155/2018/8031328Search in Google Scholar

18. Jovanovic M, Gajovic N, Zdravkovic N, Jovanovic M, Jurisevic M, Vojvodic D, Mirkovic D, Milev B, Maric V, Arsenijevic N. Fecal galectin-1 as a potential marker for colorectal cancer and disease severity. Vojnosanit Pregl (2018); DOI: https://doi.org/10.2298/VSP171201007J.10.2298/VSP171201007JSearch in Google Scholar

19. Hamilton SR and Aaltonen LA. Pathology and genetics:tumours of the digestive system, in World Health Organization Classification of Tumours, IARC, Lyon, France, 3rd edition, 2000. 103-143.Search in Google Scholar

20. Lanza G, Messerini L, Gafa R, Risio M. Colorectal tumors: the histology report. Dig Liver Dis 2011;43 Suppl 4:S344-355.10.1016/S1590-8658(11)60590-2Search in Google Scholar

21. Heilmann RM, Cranford SM, Ambrus A, Grützner N, Schellenberg S, Ruaux CG, Suchodolski JS, Steiner JM. Validation of an enzyme-linked immunosorbent assay (ELISA) for the measurement of canine S100A12. Vet Clin Pathol 2016;45:135-47.10.1111/vcp.1232026765807Search in Google Scholar

22. Prakash N, Stumbles P, Mansfield C. Initial Validation of Cytokine Measurement by ELISA in Canine Feces. Open Journal of Veterinary Medicine 2013;3:282-288.10.4236/ojvm.2013.36046Search in Google Scholar

23. Jovanovic M, Zdravkovic N, Jovanovic I, Radosavljevic G, Gajovic N, Zdravkovic N, Maric V, Arsenijevic N. TGF-β as a marker of ulcerative colitis and disease severity. Ser J Exp Clin Res DOI: 10.1515/sjecr-2017-0019.10.1515/sjecr-2017-0019Search in Google Scholar

24. Cui G, Qi H, Gundersen MD, Yang H, Christiansen I, Sørbye SW, Goll R, Florholmen J. Dynamics of the IL-33/ST2 network in the progression of human colorectal adenoma to sporadic colorectal cancer. Cancer Immunol Immunother 2015;64:181-190.10.1007/s00262-014-1624-x25324197Search in Google Scholar

25. Mertz KD, Mager LF, Wasmer MH, Thiesler T, Koelzer VH, Ruzzante G, Joller S, Murdoch JR, Brümmendorf T, Genitsch V, Lugli A, Cathomas G, Moch H, Weber A, Zlobec I, Junt T, Krebs P. The IL-33/ST2 pathway contributes to intestinal tumorigenesis in humans and mice. Oncoimmunology 2015;5:e1062966.10.1080/2162402X.2015.1062966476034326942077Search in Google Scholar

26. Wagner M, Peterson CG, Ridefelt P, Sangfelt P, Carlson M. Fecal markers of inflammation used as surrogate markers for treatment outcome in relapsing inflammatory bowel disease. World J Gastroenterol 2008;14:5584-5589.10.3748/wjg.14.5584274634718810778Search in Google Scholar

27. Tibble JA, Sigthorsson G, Bridger S, Fagerhol MK, Bjarnason I. Surrogate markers of intestinal inflammation are predictive of relapse in patients with inflammatory bowel disease. Gastroenterology 2000;119:15-22.10.1053/gast.2000.852310889150Search in Google Scholar

28. Tibble J, Teahon K, Thjodleifsson B, Roseth A, Sigthorsson G, Bridger S, Foster R, Sherwood R, Fagerhol M, Bjarnason I. A simple method for assessing intestinal inflammation in Crohn’s disease. Gut 2000;47:506-513.10.1136/gut.47.4.506172806010986210Search in Google Scholar

29. Johne B, Kronborg O, Tøn HI, Kristinsson J, Fuglerud P. A new fecal calprotectin test for colorectal neoplasia. Clinical results and comparison with previous method. Scand J Gastroenterol 2001;36:291-296.10.1080/003655201750074618Search in Google Scholar

30. Fang M, Li Y, Huang K, et al. IL33 Promotes Colon Cancer Cell Stemness via JNK Activation and Macrophage Recruitment. Cancer Res 2017;77:2735-2745.10.1158/0008-5472.CAN-16-1602576017028249897Search in Google Scholar

31. Li Y, Shi J, Qi S, Zhang J, Peng D, Chen Z, Wang G, Wang Z, Wang L. IL-33 facilitates proliferation of colorectal cancer dependent on COX2/PGE(2). J Exp Clin Cancer Res 2018;37:196.10.1186/s13046-018-0839-7609864030119635Search in Google Scholar

32. Zhang Y, Zoltan M, Riquelme E, et al. Immune Cell Production of Interleukin 17 Induces Stem Cell Features of Pancreatic Intraepithelial Neoplasia Cells. Gastroenterology 2018;155:210-223.10.1053/j.gastro.2018.03.041603507529604293Search in Google Scholar

33. He Z, Chen L, Souto FO, Canasto-Chibuque C, Bongers G, Deshpande M, Harpaz N, Ko HM, Kelley K, Furtado GC, Lira SA. Epithelial-derived IL-33 promotes intestinal tumorigenesis in Apc (Min/+) mice. Sci Rep 2017;7:5520.10.1038/s41598-017-05716-z551121628710436Search in Google Scholar

34. Italiani P, Boraschi D. From Monocytes to M1/M2 Macrophages: Phenotypical vs. Functional Differentiation. Front Immunol 2014;5:514.10.3389/fimmu.2014.00514Search in Google Scholar

35. Zhang Y, Davis C, Shah S, Hughes D, Ryan JC, Alto-mare D, Peña MM. IL-33 promotes growth and liver metastasis of colorectal cancer in mice by remodeling the tumor microenvironment and inducing angiogenesis. Mol Carcinog 2017;56:272-287.10.1002/mc.22491563013627120577Search in Google Scholar

36. Akimoto M, Maruyama R, Takamaru H, Ochiya T, Takenaga K. Soluble IL-33 receptor sST2 inhibits colorectal cancer malignant growth by modifying the tumour microenvironment. Nat Commun 2016;7:13589.10.1038/ncomms13589512305727882929Search in Google Scholar

37. Akbay EA, Koyama S, Liu Y, et al. Interleukin-17A Promotes Lung Tumor Progression through Neutrophil Attraction to Tumor Sites and Mediating Resistance to PD-1 Blockade. J Thorac Oncol 2017;12:1268-1279.10.1016/j.jtho.2017.04.017553206628483607Search in Google Scholar

38. Chen Y, Yuan R, Wu X, He X, Zeng Y, Fan X, Wang L, Wang J, Lan P, Wu X. A Novel Immune Marker Model Predicts Oncological Outcomes of Patients with Colorectal Cancer. Ann Surg Oncol 2016;23:826-832.10.1245/s10434-015-4889-126581202Search in Google Scholar

39. Liu J, Duan Y, Cheng X, Chen X, Xie W, Long H, Lin Z, Zhu B. IL-17 is associated with poor prognosis and promotes angiogenesis via stimulating VEGF production of cancer cells in colorectal carcinoma. Biochem Biophys Res Commun 2011;407:348-354.10.1016/j.bbrc.2011.03.02121396350Search in Google Scholar

40. Kyung-Ah Cho, Jee Won Suh, Jung Ho Sohn, Jung Won Park, Hyejin Lee, JiHee Lee Kang, So-Youn Woo, and Young Joo Cho. IL-33 induces Th17-mediated airway inflammation via mast cells in ovalbumin-challenged mice. Am J Physiol Lung Cell Mol Physiol 2012;302:429-440.10.1152/ajplung.00252.201122180658Search in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Medicine, Clinical Medicine, other