Otwarty dostęp

Drought stress-induced Picea abies transcriptome changes in the context of functional interactions


Zacytuj

Anders S, Pyl PT, Huber W (2015) HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics 31(2):166-169. https://dx.doi.org/10.1093/bioinformatics/btu638Search in Google Scholar

Aslam MM, Waseem M, Jakada BH, Okal EJ, Lei ZL, Saqib HSA, Yuan W, Xu WF, Zhang Q (2022) Mechanisms of abscisic acid-mediated drought stress responses in plants. International Journal of Molecular Sciences 23(3):1084. https://dx.doi.org/10.3390/ijms23031084Search in Google Scholar

Baldoni E, Genga A, Cominelli E (2015) Plant MYB transcription factors: Their role in drought response mechanisms. International Journal of Molecular Sciences 16(7):15811-15851. https://dx.doi.org/10.3390/ijms160715811Search in Google Scholar

Behringer D, Zimmermann H, Ziegenhagen B, Liepelt S (2015) Differential gene expression reveals candidate genes for drought stress response in Abies alba (Pinaceae). Plos One 10(4):e0124564. https://dx.doi.org/10.1371/journal.pone.0124564Search in Google Scholar

Bhaskara GB, Nguyen TT, Verslues PE (2012) Unique drought resistance functions of the highly ABA-induced clade A protein phosphatase 2Cs. Plant Physiology 160(1):379-395. https://dx.doi.org/10.1104/pp.112.202408Search in Google Scholar

Blighe K, Rana S, Lewis M (2018) EnhancedVolcano: Publication-ready volcano plots with enhanced colouring and labeling. Retrieved from https://github.com/kevinblighe/EnhancedVolcano.Search in Google Scholar

Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114-2120. https://dx.doi.org/10.1093/bioinformatics/btu170Search in Google Scholar

Canel C, Bailey-Serres JN, Roose ML (1995) Pummelo fruit transcript homologous to ripening-induced genes. Plant Physiology 108(3):1323-1324. https://dx.doi.org/10.1104/pp.108.3.1323Search in Google Scholar

Das D, Bhattacharyya S, Bhattacharyya M, Sashankar P, Ghosh A, Mandal P (2022) Transcriptome analysis of mulberry (Morus alba L.) leaves to identify differentially expressed genes associated with post-harvest shelf-life elongation. Scientific Reports 12(1):18195. https://dx.doi.org/10.1038/s41598-022-21828-7Search in Google Scholar

Daszkowska-Golec A, Szarejko I (2013) The molecular basis of ABA-mediated plant response to drought. In: Vahdati K and C Leslie (eds). Abiotic stress -Plant responses and applications in agriculture. London: Intechopen, pp 103-133Search in Google Scholar

Davin N, Edger PP, Hefer CA, Mizrachi E, Schuetz M, Smets E, Myburg AA, Douglas CJ, Schranz ME, Lens F (2016) Functional network analysis of genes differentially expressed during xylogenesis in soc1ful woody Arabidopsis plants. Plant Journal 86(5):376-390. https://dx.doi.org/10.1111/tpj.13157Search in Google Scholar

de Maria N, Guevara MA, Perdiguero P, Velez MD, Cabezas JA, Lopez-Hinojosa M, Li Z, Diaz LM, Pizarro A, Mancha JA, Sterck L, Sanchez-Gomez D, Miguel C, Collada C, Diaz-Sala MC, Cervera MT (2020) Molecular study of drought response in the Mediterranean conifer Pinus pinaster AIT.: Differential transcriptomic profiling reveals constitutive water deficit-independent drought tolerance mechanisms. Ecology and Evolution 10(18):9788-9807. https://dx.doi.org/10.1002/ece3.6613Search in Google Scholar

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15-21. https://dx.doi.org/10.1093/bioinformatics/bts635Search in Google Scholar

Du MF, Ding GJ, Cai QO (2018) The transcriptomic responses of Pinus massoniana to drought stress. Forests 9(6):326. https://dx.doi.org/10.3390/f9060326Search in Google Scholar

Edens L, Heslinga L, Klok R, Ledeboer AM, Maat J, Toonen MY, Visser C, Verrips CT(1982) Cloning of cDNA encoding the sweet-tasting plant protein thaumatin and its expression in Escherichia coli. Gene 18(1):1-12. https://dx.doi.org/10.1016/0378-1119(82)90050-6Search in Google Scholar

Estravis-Barcala M, Mattera MG, Soliani C, Bellora N, Opgenoorth L, Heer K, Arana MV (2020) Molecular bases of responses to abiotic stress in trees. Journal of Experimental Botany 71(13):3765-3779. https://dx.doi.org/10.1093/jxb/erz532Search in Google Scholar

Ewald D, Hu JJ (2007) Influence of cytokinin and ammonium nitrate on elongation of adventitious buds in Norway spruce (Picea abies). Scientia Silvae Sinicae 43(1):28-43Search in Google Scholar

Ewald D, Suss R (1993) A system for repeatable formation of elongating adventitious buds in Norway spruce tissue cultures. Silvae Genetica 42(4-5):169-175Search in Google Scholar

Feller U (2016) Drought stress and carbon assimilation in a warming climate: Reversible and irreversible impacts. Journal of Plant Physiology 203:69-79. https://dx.doi.org/10.1016/j.jplph.2016.04.002Search in Google Scholar

Fox H, Doron-Faigenboim A, Kelly G, Bourstein R, Attia Z, Zhou J, Moshe Y, Moshelion M, David-Schwartz R (2018) Transcriptome analysis of Pinus halepensis under drought stress and during recovery. Tree Physiology 38(3):423-441. https://dx.doi.org/10.1093/treephys/tpx137Search in Google Scholar

Fujita Y, Nakashima K, Yoshida T, Katagiri T, Kidokoro S, Kanamori N, Umezawa T, Fujita M, Maruyama K, Ishiyama K, Kobayashi M, Nakasone S, Yamada K, Ito T, Shinozaki K, Yamaguchi-Shinozaki K (2009) Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant and Cell Physiology 50(12):2123-2132. https://dx.doi.org/10.1093/pcp/pcp147Search in Google Scholar

Ge ZM, Kellomaki S, Peltola H, Zhou X, Wang KY, Vaisanen H (2011) Impacts of changing climate on the productivity of Norway spruce dominant stands with a mixture of Scots pine and birch in relation to water availability in southern and northern Finland. Tree Physiology 31(3):323-338. https://dx.doi.org/10.1093/treephys/tpr001Search in Google Scholar

Haas JC, Vergara A, Serrano AR, Mishra S, Hurry A, Street NR (2021) Candidate regulators and target genes of drought stress in needles and roots of Norway spruce. Tree Physiology 41(7):1230-1246. https://dx.doi.org/10.1093/treephys/tpaa178Search in Google Scholar

Harfouche A, Meilan R, Altman A (2014) Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement. Tree Physiology 34(11):1181-1198. https://dx.doi.org/10.1093/treephys/tpu012Search in Google Scholar

Jia JB, Zhou J, Shi WG, Cao X, Luo J, Polle A, Luo ZB (2017) Comparative transcriptomic analysis reveals the roles of overlapping heat-/drought-responsive genes in poplars exposed to high temperature and drought. Scientific Reports 7:43215. https://dx.doi.org/10.1038/srep43215Search in Google Scholar

Kizis D, Lumbreras V, Pages M (2001) Role of AP2/EREBP transcription factors in gene regulation during abiotic stress. FEBS Letters 498(2-3):187-189. https://dx.doi.org/10.1016/S0014-5793(01)02460-7Search in Google Scholar

Klápste J, Lecoy J, del Rosario García-Gil M (2020) Drought stress adaptation in Norway spruce and related genomics work. In: Porth IM and AR De Torre (eds). The spruce genome. Springer, Cham pp 129–153Search in Google Scholar

Liu W, Jiang Y, Wang CH, Zhao LL, Jin YZ, Xing QJ, Li M, Lv TH, Qi HY (2020) Lignin synthesized by CmCAD2 and CmCAD3 in oriental melon (Cucumis melo L.) seedlings contributes to drought tolerance. Plant Molecular Biology 103(6):689-704. https://dx.doi.org/10.1007/s11103-020-01018-7Search in Google Scholar

Lohse M, Nagel A, Herter T, May P, Schroda M, Zrenner R, Tohge T, Fernie AR, Stitt M, Usadel B (2014) Mercator: a fast and simple web server for genome scale functional annotation of plant sequence data. Plant Cell and Environment 37(5):1250-1258. https://dx.doi.org/10.1111/pce.12231Search in Google Scholar

Lorenz WW, Alba R, Yu YS, Bordeaux JM, Simoes M, Dean JFD (2011) Microarray analysis and scale-free gene networks identify candidate regulators in drought-stressed roots of loblolly pine (P. taeda L.). BMC Genomics 12:264. https://dx.doi.org/10.1186/1471-2164-12-264Search in Google Scholar

Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15(12):550. https://dx.doi.org/10.1186/s13059-014-0550-8Search in Google Scholar

Mader M, Blanc-Jolivet C, Kersten B, Liesebach H, Degen B (2022) A novel and diverse set of SNP markers for rangewide genetic studies in Picea abies. Conservation Genetics Resources 14(3):267-270. https://dx.doi.org/10.1007/s12686-022-01276-1Search in Google Scholar

Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess over-representation of Gene Ontology categories in Biological Networks. Bioinformatics 21(16):3448-3449. https://dx.doi.org/10.1093/bioinformatics/bti551Search in Google Scholar

Maresova J, Hudokova H, Sarvasova L, Fleischer P, Ditmarova L, Blazenec M, Jamnicka G (2022) Dynamics of internal isoprenoid metabolites in young Picea abies (Norway spruce) shoots during drought stress conditions in springtime. Phytochemistry 203:113414. https://dx.doi.org/10.1016/j.phytochem.2022.113414Search in Google Scholar

Menard D, Blaschek L, Kriechbaum K, Lee CC, Serk H, Zhu CT, Lyubartsev A, Nuoendagula, Bacsik Z, Bergstrom L, Mathew A, Kajita S, Pesquet E (2022) Plant biomechanics and resilience to environmental changes are controlled by specific lignin chemistries in each vascular cell type and morphotype. Plant Cell 34(12):4877-4896. https://dx.doi.org/10.1093/plcell/koac284Search in Google Scholar

Moran E, Lauder J, Musser C, Stathos A, Shu M (2017) The genetics of drought tolerance in conifers. New Phytologist 216(4):1034-1048. https://dx.doi.org/10.1111/nph.14774Search in Google Scholar

Munemasa S, Hauser F, Park J, Waadt R, Brandt B, Schroeder JI (2015) Mechanisms of abscisic acid-mediated control of stomatal aperture. Current Opinion in Plant Biology 28:154-162. https://dx.doi.org/10.1016/j.pbi.2015.10.010Search in Google Scholar

Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin YC, Scofield DG, Vezzi F, Delhomme N, Giacomello S, Alexeyenko A, Vicedomini R, Sahlin K, Sherwood E, Elfstrand M, Gramzow L, Holmberg K, Hallman J, Keech O, Klasson L, Koriabine M, Kucukoglu M, Kaller M, Luthman J, Lysholm F, Niittyla T, Olson A, Rilakovic N, Ritland C, Rossello JA, Sena J, Svensson T, Talavera-Lopez C, Theissen G, Tuominen H, Vanneste K, Wu ZQ, Zhang B, Zerbe P, Arvestad L, Bhalerao R, Bohlmann J, Bousquet J, Gil RG, Hvidsten TR, de Jong P, MacKay J, Morgante M, Ritland K, Sundberg B, Thompson SL, Van de Peer Y, Andersson B, Nilsson O, Ingvarsson PK, Lundeberg J, Jansson S (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497(7451):579-584. https://dx.doi.org/10.1038/nature12211Search in Google Scholar

Osakabe Y, Osakabe K, Shinozaki K, Tran LSP (2014) Response of plants to water stress. Frontiers in Plant Science 5:86. https://dx.doi.org/10.3389/fpls.2014.00086Search in Google Scholar

Padmanabhan V, Dias DMAL, Newton RJ (1997) Expression analysis of a gene family in loblolly pine (Pinus taeda L.) induced by water deficit stress. Plant Molecular Biology 35(6):801-807. https://dx.doi.org/10.1023/A:1005897921567Search in Google Scholar

Pervaiz T, Liu SW, Uddin S, Amjid MW, Niu SH, Wu HX (2021) The transcriptional landscape and hub genes associated with physiological responses to drought stress in Pinus tabuliformis. International Journal of Molecular Sciences 22(17):9604. https://dx.doi.org/10.3390/ijms22179604Search in Google Scholar

Ranjan A, Sinha R, Singla-Pareek SL, Pareek A, Singh AK (2022) Shaping the root system architecture in plants for adaptation to drought stress. Physiologia Plantarum 174(2):e13651. https://dx.doi.org/10.1111/ppl.13651Search in Google Scholar

Ruizmedrano R, Jimenezmoraila B, Herreraestrella L, Riverabustamante RF (1992) Nucleotide-sequence of an Osmotin-like cDNA induced in tomato during viroid infection. Plant Molecular Biology 20(6):1199-1202. https://dx.doi.org/10.1007/Bf00028909Search in Google Scholar

Salvi P, Manna M, Kaur H, Thakur T, Gandass N, Bhatt D, Muthamilarasan M (2021) Phytohormone signaling and crosstalk in regulating drought stress response in plants. Plant Cell Reports 40(8):1305-1329. https://dx.doi.org/10.1007/s00299-021-02683-8Search in Google Scholar

Sanagi M, Lu Y, Aoyama S, Morita Y, Mitsuda N, Ikeda M, Ohme-Takagi M, Sato T, Yamaguchi J (2018) Sugar-responsive transcription factor bZIP3 affects leaf shape in Arabidopsis plants. Plant Biotechnology 35(2):167-170. https://dx.doi.org/10.5511/plantbiotechnology.18.0410aSearch in Google Scholar

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research 13(11):2498-2504. https://dx.doi.org/10.1101/gr.1239303Search in Google Scholar

Shorohova E, Kneeshaw D, Kuuluvainen T, Gauthier S (2011) Variability and dynamics of old-growth forests in the circumboreal zone: Implications for conservation, restoration and management. Silva Fennica 45(5):785-806. https://dx.doi.org/10.14214/sf.72Search in Google Scholar

Shrestha A, Fendel A, Nguyen TH, Adebabay A, Kullik AS, Benndorf J, Leon J, Naz AA (2022) Natural diversity uncovers P5CS1 regulation and its role in drought stress tolerance and yield sustainability in barley. Plant Cell and Environment 45(12):3523-3536. https://dx.doi.org/10.1111/pce.14445Search in Google Scholar

Singh D, Laxmi A (2015) Transcriptional regulation of drought response: a tortuous network of transcriptional factors. Frontiers in Plant Science 6:895. https://dx.doi.org/10.3389/fpls.2015.00895Search in Google Scholar

Song JL, Wang ZY, Wang YH, Du J, Wang CY, Zhang XQ, Chen S, Huang XL, Xie XM, Zhong TX (2022) Overexpression of Pennisetum purpureum CCoAOMT contributes to lignin deposition and drought tolerance by promoting the accumulation of flavonoids in transgenic tobacco. Frontiers in Plant Science 13:884456. https://dx.doi.org/10.3389/fpls.2022.884456Search in Google Scholar

Sundell D, Mannapperuma C, Netotea S, Delhomme N, Lin YC, Sjodin A, Van de Peer Y, Jansson S, Hvidsten TR, Street NR (2015) The Plant Genome Integrative Explorer Resource: PlantGenIE.org. New Phytologist 208(4):1149-1156. https://dx.doi.org/10.1111/nph.13557Search in Google Scholar

Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Mering C (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research 47(D1):D607-D613. https://dx.doi.org/10.1093/nar/gky1131Search in Google Scholar

Tabaeizadeh Z (1998) Drought-induced responses in plant cells. International Review of Cytology - a Survey of Cell Biology, Vol 182 182:193-247. https://dx.doi.org/10.1016/S0074-7696(08)62170-1Search in Google Scholar

Tian T, Liu Y, Yan HY, You Q, Yi X, Du Z, Xu WY, Su Z (2017) agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Research 45(W1):W122-W129. https://dx.doi.org/10.1093/nar/gkx382Search in Google Scholar

Usadel B, Poree F, Nagel A, Lohse M, Czedik-Eysenberg A, Stitt M (2009) A guide to using MapMan to visualize and compare Omics data in plants: a case study in the crop species, Maize. Plant Cell and Environment 32(9):1211-1229. https://dx.doi.org/10.1111/j.1365-3040.2009.01978.xSearch in Google Scholar

Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annual Review of Plant Biology 57:781-803. https://dx.doi.org/10.1146/annurev.arplant.57.032905.105444Search in Google Scholar

Yao T, Zhang J, Xie M, Yuan GL, Tschaplinski TJ, Muchero W, Chen JG (2021) Transcriptional regulation of drought response in Arabidopsis and woody plants. Frontiers in Plant Science 11:572137. https://dx.doi.org/10.3389/fpls.2020.572137Search in Google Scholar

Yoshida T, Fujita Y, Maruyama K, Mogami J, Todaka D, Shinozaki K, Yamaguchi-Shinozaki K (2015) Four Arabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signalling in response to osmotic stress. Plant Cell and Environment 38(1):35-49. https://dx.doi.org/10.1111/pce.12351Search in Google Scholar

Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2010) AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant Journal 61(4):672-685. https://dx.doi.org/10.1111/j.1365-313X.2009.04092.xSearch in Google Scholar

You J, Hu H, Xiong L (2012) An ornithine delta-aminotransferase gene OsOAT confers drought and oxidative stress tolerance in rice. Plant Sci 197:59-69. https://dx.doi.org/10.1016/j.plantsci.2012.09.002Search in Google Scholar

eISSN:
2509-8934
Język:
Angielski
Częstotliwość wydawania:
Volume Open
Dziedziny czasopisma:
Life Sciences, Molecular Biology, Genetics, Biotechnology, Plant Science