1. bookTom 70 (2021): Zeszyt 1 (January 2021)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2509-8934
Pierwsze wydanie
22 Feb 2016
Częstotliwość wydawania
1 raz w roku
Języki
Angielski
access type Otwarty dostęp

Towards new seed orchard designs in Germany – A review

Data publikacji: 08 May 2021
Tom & Zeszyt: Tom 70 (2021) - Zeszyt 1 (January 2021)
Zakres stron: 84 - 98
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2509-8934
Pierwsze wydanie
22 Feb 2016
Częstotliwość wydawania
1 raz w roku
Języki
Angielski
Abstract

New first and 1.5 generation seed orchards are to be created in Germany based on recently assembled breeding populations of Acer pseudoplatanus, Larix sp., Picea abies, Pinus sylvestris, Pseudotsuga menziesii, and Quercus sp. To justify the high expenses in time and cost for orchard establishment and maintenance, planning should make use of consolidated knowledge and experience of both the national and international scientific community. Here, we briefly describe advances in genetic gains achieved through tree breeding, and resume population genetic aspects and design considerations to draw conclusions for clonal composition and spatial design of the new orchards.

We conclude that to avoid outbreeding depression separate orchards are required for each breeding zone. The zones are species-specific and defined by ecological and climatic aspects. A minimum of 60-80 clones per orchard is recommended for native tree species with high proportions of natural regeneration in forest practice. This would allow future selective thinning based on estimated breeding values from progeny testing. It would also permit the transfer of seed orchard progenies into a naturally regenerating forest stands without the risk of a genetic bottleneck. Lower clone numbers are appropriate for non-native species and hybrids. It is important to strictly avoid inbreeding depression, achieved by using only one clone per progeny or population, from which the plus trees were selected. Further, the spatial layout should promote random mating by optimizing the neighbourhood of each clone. With all of these considerations taken into account, we expect superior quality traits and at least 10-15 % more volume from the new seed orchards.

Keywords

Adams WT, Burczyk J (2000) Magnitude and implications of gene flow in gene conservation reserves. In: Young A, D Boshier and T Boyle (eds). Forest conservation genetics: Principles and practice. Victoria, Australia: CSIRO Publishing, Collingwood, pp 215-244 https://doi.org/10.1079/9780851995045.021510.1079/9780851995045.0215 Search in Google Scholar

Ahtikoski A, Ojansuu R, Haapanen M, Hynynen J, Kärkkäinen K (2012) Financial performance of using genetically improved regeneration material of Scots pine (Pinus sylvestris L.) in Finland. New Forests 43(3):335-348. https://dx.doi.org/10.1007/s11056-011-9284-610.1007/s11056-011-9284-6 Search in Google Scholar

Andersson B, Elfving B, Ericsson T, Persson T, Gregorsson B (2003) Performance of Improved Pinus sylvestris in Northern Sweden. Scandinavian Journal of Forest Research 18(3):199-206. https://dx.doi.org/10.1080/02827581.2003.972829010.1080/02827581.2003.9728290 Search in Google Scholar

Bastien J-C, Sanchez L, Michaud D (2013) Douglas-Fir (Pseudotsuga menziesii (Mirb.) Franco). In: Pâques LE (ed) Forest Tree Breeding in Europe: Current State-of-the-Art and Perspectives. Dordrecht © Springer Science+Business Media, pp 325-369. https://doi.org/10.1007/978-94-007-6146-9_710.1007/978-94-007-6146-9_7 Search in Google Scholar

Bell GD, Fletcher AM (1978) Computer organised orchard layouts (COOL) based on the permutated neighbourhood design concept. Silvae Genetica 27(6):223-225 Search in Google Scholar

Bishir J, Roberds JH (1997) Limit theorems and a general framework for risk analysis in clonal forestry. Mathematical Biosciences 142(1):1-11. https://doi.org/10.1016/s0025-5564(96)00184-810.1016/S0025-5564(96)00184-8 Search in Google Scholar

Bishir J, Roberds JH (1999) On numbers of clones needed for managing risks in clonal forestry. Forest Genetics 6(3):149-155 Search in Google Scholar

BLE (2017) Forstliches Vermehrungsgut - Informationen für die Praxis. 9. Auflage. Bonn, Germany: BLE (Bundesanstalt für Landwirtschaft und Ernährung), 72 p, ISBN 978-3-8308-1291-3 Search in Google Scholar

BLE (2019) Übersicht über zugelassenes Ausgangsmaterial für forstliches Vermehrungsgut in der Bundesrepublik Deutschland (Stand: 01.07.2019) [online]. Available from https://www.ble.de/DE/Themen/Wald-Holz/Forstliches-Vermehrungsgut/forstliches-vermehrungsgut_node.html [cited August 8, 2020] Search in Google Scholar

Burdon RD, Carson MJ, Shelbourne CJA (2008) Achievements in forest tree genetic improvement in Australia and New Zealand 10: Pinus radiata in New Zealand. Australian Forestry 71(4):263-279. https://dx.doi.org/10.1080/00049158.2008.1067504510.1080/00049158.2008.10675045 Search in Google Scholar

Burrows P (1970) Coancestry control in forest tree breeding plans. Proceedings of the Second Meeting of the Working Group on Quantitative Genetics, Section 22 IUFRO, August 18-19, 1969, Raleigh, North Carolina: 27-36 Search in Google Scholar

Carson SD, Garcia O, Hayes JD (1999) Realized Gain and Prediction of Yield with Genetically Improved Pinus radiata in New Zealand. Forest Science 45(2):186-200. https://dx.doi.org/10.1093/forestscience/45.2.186 Search in Google Scholar

Cavers S, Degen B, Caron H, Lemes MR, Margis R, Salgueiro F, Lowe AJ (2005) Optimal sampling strategy for estimation of spatial genetic structure in tree populations. Heredity 95(281):289. https://doi.org/10.1038/sj.hdy.680070910.1038/sj.hdy.680070916030529 Search in Google Scholar

Chakravarty GN, Bagchi SK (1993) A computer program for permutated neigh-bourhood seed orchard design. Silvae Genetica 42:1-5 Search in Google Scholar

Chakravarty GN, Bagchi SK (1994) Short Note: Enhancement of the computer program of the permutated neighbourhood seed orchard design. Silvae Genetica 43(2):177-178 Search in Google Scholar

Chaloupková K, Stejskal J, El-Kassaby YA, Frampton J, Lstibůrek M (2019) Current advances in seed orchard layouts: Two Case Studies in Conifers. Forests 10(2):1-6. https://dx.doi.org/10.3390/f1002009310.3390/f10020093 Search in Google Scholar

Chaloupková K, Stejskal J, El-Kassaby YA, Lstibůrek M (2016) Optimum neighborhood seed orchard design. Tree Genetics & Genomes 12(6):105. https://dx.doi.org/10.1007/s11295-016-1067-y10.1007/s11295-016-1067-y Search in Google Scholar

Chambel MR, Climent J, Pichot C, Ducci F (2013) Mediterranean Pines (Pinus halepensis Mill. and brutia Ten.). In: Pâques LE (ed) Forest Tree Breeding in Europe: Current State-of-the-Art and Perspectives. Dordrecht © Springer Science+Business Media, pp 229-265. https://doi.org/10.1007/978-94-007-6146-9_510.1007/978-94-007-6146-9_5 Search in Google Scholar

Costa e Silva J, Potts BM, Lopez GA (2014) Heterosis may result in selection favouring the products of long-distance pollen dispersal in Eucalyptus. PLoS ONE 9(4):e93811-e93811. https://dx.doi.org/10.1371/journal.pone.009381110.1371/journal.pone.0093811399416424751722 Search in Google Scholar

D’Amico I, Vilardi JC, Saidman BO, Ewens M, Bessega C (2019) Pollen contamination and mating patterns in a Prosopis alba clonal orchard: impact on seed orchards establishment. iForest - Biogeosciences and Forestry 12(3):330-337. https://dx.doi.org/10.3832/ifor2936-01210.3832/ifor2936-012 Search in Google Scholar

Danusevičius D, Lindgren D (2002) Efficiency of selection based on phenotype, clone and progeny testing in long-term breeding. Silvae Genetica 5(1):19–26 Search in Google Scholar

Danusevičius D, Lindgren D (2008) Strategies for optimal deployment of related clones into seed orchards. Silvae Genetica 57(1-6):119. https://doi.org/10.1515/sg-2008-001810.1515/sg-2008-0018 Search in Google Scholar

Danusevicius D, Kerpauskaite V, Kavaliauskas D, Fussi B, Konnert M, Baliuckas V (2016) The effect of tending and commercial thinning on the genetic diversity of Scots pine stands. European Journal of Forest Research 135(6):1159-1174. https://dx.doi.org/10.1007/s10342-016-1002-710.1007/s10342-016-1002-7 Search in Google Scholar

Darwin C (1877) The effects of cross and self fertilisation in the vegetable kingdom. London: D. Appleton, 486 p10.5962/bhl.title.104481 Search in Google Scholar

Di-Giovanni F, Kevan PG (1991) Factors affecting pollen dynamics and its importance to pollen contamination: a review. Canadian Journal of Forest Research 21(8):1155-1170. https://dx.doi.org/10.1139/x91-16310.1139/x91-163 Search in Google Scholar

Doerksen TK, Bousquet J, Beaulieu J (2014) Inbreeding depression in intra-provenance crosses driven by founder relatedness in white spruce. Tree Genetics & Genomes 10(1):203-212. https://dx.doi.org/10.1007/s11295-013-0676-y10.1007/s11295-013-0676-y Search in Google Scholar

Durel CE, Bertin P, Kremer A (1996) Relationship between inbreeding depression and inbreeding coefficient in maritime pine (Pinus pinaster). Theoretical and Applied Genetics 92(3):347-356. https://dx.doi.org/10.1007/BF0022367810.1007/BF0022367824166256 Search in Google Scholar

Edmands S (2007) Between a rock and a hard place: evaluating the relative risks of inbreeding and outbreeding for conservation and management. Molecular Ecology 16(3):463-475. https://doi.org/10.1111/j.1365-294x.2006.03148.x10.1111/j.1365-294X.2006.03148.x17257106 Search in Google Scholar

Edmands S, Timmerman CC (2003) Modeling factors affecting the severity of outbreeding depression. Conservation Biology 17(3):883-892. https://dx.doi.org/10.1046/j.1523-1739.2003.02026.x10.1046/j.1523-1739.2003.02026.x Search in Google Scholar

Edvardsen O, Steffenrem A, Johnskås O, Johnsen Ø, Myking T, Kvaalen H (2010) Strategi for Skogplanteforedling 2010-2040 (høringsutkast). Hamar, Norway, 27 p Search in Google Scholar

El-Kassaby YA (2003) Clonal-row vs. random seed orchard designs: mating pattern and seed yield of western hemlock (Tsuga heterophylla (Raf.) Sarg.). Forest Genetics 10:121-127 Search in Google Scholar

El-Kassaby YA, Fayed M, Klápště J, Lstibůrek M (2014) Randomized, replicated, staggered clonal-row (R2SCR) seed orchard design. Tree Genetics & Genomes 10(3):555-563. https://dx.doi.org/10.1007/s11295-014-0703-710.1007/s11295-014-0703-7 Search in Google Scholar

El-Kassaby YA, Stoehr MU, Reid D, Walsh CG, Lee TE (2007) Clonal-row versus random seed orchard designs: interior spruce mating system evaluation. Canadian Journal of Forest Research 37(3):690-696. https://dx.doi.org/10.1139/X06-24810.1139/X06-248 Search in Google Scholar

Eriksson G (1998) Evolutionary forces influencing variation among populations of Pinus sylvestris. Silva Fennica 32:173-184. https://doi.org/10.14214/sf.69410.14214/sf.694 Search in Google Scholar

Eriksson G, Ilstedt B (1986) Stem volume of intra-and interprovenance families of Picea abies (L.) Karst. Scandinavian Journal of Forest Research 1(1-4):141-152. https://doi.org/10.1080/0282758860938240710.1080/02827588609382407 Search in Google Scholar

Eusemann P, Liesebach H (2021) Small-scale genetic structure and mating patterns in an extensive sessile oak forest (Quercus petraea (MATT.) LIEBL.). Ecology and Evolution, in press https://dx.doi.org/10.002/ece3.761310.1002/ece3.7613821698534188852 Search in Google Scholar

Fernandes L, Rocheta M, Cordeiro J, Pereira S, Gerber S, Oliveira MM, Ribeiro MM (2008) Genetic variation, mating patterns and gene flow in a Pinus pinaster Aiton clonal seed orchard. Annals of Forest Science 65(7):706-706. https://dx.doi.org/10.1051/forest:200804910.1051/forest:2008049 Search in Google Scholar

Ford GA, McKeand SE, Jett JB, Isik F (2014) Effects of Inbreeding on Growth and Quality Traits in Loblolly Pine. Forest Science 61(3):579-585. https://dx.doi.org/10.5849/forsci.13-18510.5849/forsci.13-185 Search in Google Scholar

Forrest CN, Ottewell KM, Whelan RJ, Ayre DJ (2011) Tests for inbreeding and out-breeding depression and estimation of population differentiation in the bird-pollinated shrub Grevillea mucronulata. Annals of Botany 108(1):185-195. https://dx.doi.org/10.1093/aob/mcr10010.1093/aob/mcr100311961221546431 Search in Google Scholar

Freeman GH (1967) The use of cyclic balanced incomplete block designs for directional seed orchards. Biometrics:761-778. https://doi.org/10.2307/252842710.2307/2528427 Search in Google Scholar

Fries A, Lindgren D, Andersson B (2008) The Swedish Scots pine seed orchard Västerhus: a study of linear deployment. Proceedings of the Seed Orchards Conference, 26-28 September, 2007, Umeǻ, Sweden: 70-78 Search in Google Scholar

Funda T, Chen CC, Liewlaksaneeyanawin C, Kenawy AMA, El-Kassaby YA (2008) Pedigree and mating system analyses in a western larch (Larix occidentalis Nutt.) experimental population. Annals of Forest Science 65(7):705. https://dx.doi.org/10.1051/forest:200805510.1051/forest:2008055 Search in Google Scholar

Funda T, El-Kassaby YA (2012) Seed orchard genetics. CAB Reviews 7(013):1-23. https://doi.org/10.1079/pavsnnr2012701310.1079/PAVSNNR20127013 Search in Google Scholar

Giertych M (1975) Seed orchard designs. In: Faulkner R (ed) Seed orchards. A joint production by specialist members of the International Union of Forest Research Organization’s Working Party on seed orchards (S2.03.3). London, UK: Forestry Commission, pp 25–37, ISBN 0-11-710146-X Search in Google Scholar

gGA [gemeinsamer Gutachterausschuss] (2019) Forstvermehrungsgutrecht: Empfehlungen des gemeinsamen Gutachterausschusses (gGA) der Länder für dessen Umsetzung. 86 p. https://www.ble.de/DE/Themen/Wald-Holz/Forstliches-Vermehrungsgut/ Search in Google Scholar

Gonzáles-Martínez SC, Gerber S, Cervera M-T, Martínez-Zapater J, Gil L, Alía R (2002) Seed gene flow and fine-scale structure in a Mediterranean pine (Pinus pinaster Ait.) using nuclear microsatellite markers. TAG Theoretical and Applied Genetics V104(8):1290-1297. https://dx.doi.org/10.1007/s00122-002-0894-410.1007/s00122-002-0894-412582583 Search in Google Scholar

Goto S, Iijima H, Ogawa H, Ohya K (2011) Outbreeding depression caused by intraspecific hybridization between local and nonlocal genotypes in Abies sachalinensis. Restoration Ecology 19(2):243-250. https://dx.doi.org/10.1111/j.1526-100X.2009.00568.x10.1111/j.1526-100X.2009.00568.x Search in Google Scholar

Grotehusmann H (1998) Geprüftes Vermehrungsgut aus Kiefern- und Erlen-Samenplantagen. AFZ-Der Wald 53:240-242 Search in Google Scholar

Grotehusmann H (2014a) Prüfung von 25 jährigen Absaaten aus Kiefern-Samenplantagen. Landbauforschung - Applied Agricultural and Forestry Research 64(2):107-118. https://dx.doi.org/10.3220/LBF_2014_107-118 Search in Google Scholar

Grotehusmann H (2014b) Prüfung von Fichten-Samenplantagen. AFZ-Der Wald 69(5):6-9 Search in Google Scholar

Haapanen M, Jansson G, Nielsen UB, Steffenrem A, Stener L-G (2015) The status of tree breeding and its potential for improving biomass production: a review of breeding activities and genetic gains in Scandinavia and Finland. Uppsala, Sweden: SkogForsk, 56 p Search in Google Scholar

Hannrup B, Cahalan C, Chantre G, Grabner M, Karlsson B, Bayon IL, Jones GL, Müller U, Pereira H, Rodrigues JC, Rosner S, Rozenberg P, Wilhelmsson L, Wimmer R (2004) Genetic parameters of growth and wood quality traits in Picea abies. Scandinavian Journal of Forest Research 19(1):14-29. https://dx.doi.org/10.1080/0282758031001953610.1080/02827580310019536 Search in Google Scholar

Hansen J, Roulund H (1997) Genetic parameters for spiral grain, stem Form, Pilodyn and growth in 13 years old clones of Sitka spruce (Picea sitchensis (BONG.) CARR.). Silvae Genetica 46(2):107-112 Search in Google Scholar

Harfouche A, Bahrman N, Baradat P, Guyon JP, Petit RJ, Kremer A (2000) Provenance hybridization in a diallel mating scheme of maritime pine (Pinus pin-aster). II. Heterosis. Canadian Journal of Forest Research 30(1):10-16. https://dx.doi.org/10.1139/x99-17910.1139/x99-179 Search in Google Scholar

Harfouche A, Kremer A (2000) Provenance hybridization in a diallel mating scheme of maritime pine (Pinus pinaster). I. Means and variance components. Canadian Journal of Forest Research 30(1):1-9. https://dx.doi.org/10.1139/x99-17810.1139/x99-178 Search in Google Scholar

Hattemer HH, Ziehe M (2018) Erhaltung forstgenetischer Ressourcen - Grundlagen und Beispiele. Göttingen University Press, ISBN 978-3-86395-362-1. https://doi.org/10.17875/gup2018-109410.17875/gup2018-1094 Search in Google Scholar

Hedrick PW, Hellsten U, Grattapaglia D (2016) Examining the cause of high inbreeding depression: analysis of whole-genome sequence data in 28 selfed progeny of Eucalyptus grandis. New Phytologist 209(2):600-611. https://dx.doi.org/10.1111/nph.1363910.1111/nph.1363926356869 Search in Google Scholar

Hofgaard A (1993) Seed rain quantity and quality, 1984–1992, in a high altitude old-growth spruce forest, northern Sweden. New Phytologist 125(3):635-640. https://dx.doi.org/10.1111/j.1469-8137.1993.tb03913.x10.1111/j.1469-8137.1993.tb03913.x33874599 Search in Google Scholar

Hufford KM, Hamrick JL (2003) Viability selection at three early life stages of the tropical tree, Platypodium elegans (Fabaceae, Papilonideae). Evolution 57(3):518-526. https://doi.org/10.1111/j.0014-3820.2003.tb01543.x10.1111/j.0014-3820.2003.tb01543.x12703941 Search in Google Scholar

Hüller W, Svolba J, Kleinschmit J (1995) Entwicklung von Kiefernplantagenabsaaten in Niedersachsen. Forst und Holz 50:142-144 Search in Google Scholar

Ingvarsson PK, Dahlberg H (2019) The effects of clonal forestry on genetic diversity in wild and domesticated stands of forest trees. Scandinavian Journal of Forest Research 34(5):370-379. https://dx.doi.org/10.1080/02827581.2018.146966510.1080/02827581.2018.1469665 Search in Google Scholar

Ivetić V, Devetaković J, Nonić M, Stanković D, Šijačić-Nikolić M (2016) Genetic diversity and forest reproductive material - from seed source selection to planting. iForest - Biogeosciences and Forestry 9(5):801-812. https://dx.doi.org/10.3832ifor1577-00910.3832/ifor1577-009 Search in Google Scholar

Jansson G, Hansen JK, Haapanen M, Kvaalen H, Steffenrem A (2017) The genetic and economic gains from forest tree breeding programmes in Scandinavia and Finland. Scandinavian Journal of Forest Research 32(4):273-286. https://dx.doi.org/10.1080/02827581.2016.124277010.1080/02827581.2016.1242770 Search in Google Scholar

Johnson R, Lipow S (2002) Compatibility of breeding for increased wood production and longterm sustainability: the genetic variation of seed orchard seed and associated risks. Proceedings of the Wood compatibility initiative workshop Number 18, 169-179 Search in Google Scholar

Kess T, El-Kassaby YA (2015) Estimates of pollen contamination and selfing in a coastal Douglas-fir seed orchard. Scandinavian Journal of Forest Research 30(4):266-275. https://dx.doi.org/10.1080/02827581.2015.101211210.1080/02827581.2015.1012112 Search in Google Scholar

Kleinschmit J (1988) Konsequenzen aus den Lärchen-Herkunftsversuchen für die Lärchen-Züchtung. Forst und Holz 43(11):259-262 Search in Google Scholar

Kohlstock N, Schneck H (1992) Scots pine breeding (Pinus sylvestris L.) at Waldsieversdorf and its impact on pine management in the Northeastern German Lowland. Silvae Genetica 41(3):174-180 Search in Google Scholar

Korecký J, El-Kassaby YA (2016) Pollination dynamics variation in a Douglas-fir seed orchard as revealed by microsatellite analysis. Silva Fennica 50:1-1210.14214/sf.1682 Search in Google Scholar

La Bastide JGA (1967) A computer program for the layouts of seed orchards. Euphytica 16(3):321-323. https://dx.doi.org/10.1007/BF0002893710.1007/BF00028937 Search in Google Scholar

Lai BSK, Funda T, Liewlaksaneeyanawin C, Klápště J, Van Niejenhuis A, Cook C, Stoehr MU, Woods JH, El-Kassaby YA (2010) Pollination dynamics in a Douglas-fir seed orchard as revealed by pedigree reconstruction. Annals of Forest Science 67(8):808. https://doi.org/10.1051/forest/201004410.1051/forest/2010044 Search in Google Scholar

Langner W, Schneck V (1998) Ein Beitrag zur Züchtung von Hybridlärchen (Larix x eurolepis HENRY). Frankfurt am Main: Sauerländer’s Verlag, 159 p Search in Google Scholar

Li B, McKeand S, Weir R (1999) Tree improvement and sustainable forestry–impact of two cycles of loblolly pine breeding in the USA. Forest Genetics 6(4):229-234 Search in Google Scholar

Libby WJ (1982) What is a safe number of clones per plantation? Proceedings of the Genetics of host-parasite interactions in forestry, 14-21 September 1980, Wageningen, The Netherlands: 342-360 Search in Google Scholar

Liepe KJ, Liesebach M (2017) Verwendungszonen für Vermehrungsgut von Douglasie auf Basis von Klimadaten und Herkunftsversuchen. Proceedings of the Hochwertiges Forstvermehrungsgut im Klimawandel - Symposium des Verbundprojektes FitForClim vom 14. bis 15. Juni 2016 in Chorin, Chorin, Germany: 39-54 Search in Google Scholar

Liesebach H, Eusemann P, Liesebach M (2015) Verwandtschaftsbeziehungen innerhalb von Prüfgliedern in Herkunftsversuchen – Beispiel Buche (Fagus sylvatica L.). Forstarchiv 86(6):174-182. https://dx.doi.org/10.4432/0300-4112-86-174 Search in Google Scholar

Liesebach M, Degen B, Grotehusmann H, Janßen A, Konnert M, Rau H-M, Schirmer R, Schneck D, Schneck V, Steiner W, Wolf H (2013) Strategie zur mittelund langfristigen Versorgung mit hochwertigem forstlichem Vermehrungsgut durch Züchtung in Deutschland. ISSN 2196-2324. Braunschweig, Germany: Thünen Institute, 69 p, ISBN 978-3-86576-107-1 Search in Google Scholar

Liesebach M, Liesebach H, Schneck V, Bäucker C, Eusemann P, Heimpold C, Liepe KJ, Pakull B, Rieckmann C, Schröder J, Wojacki J (2020) Bereitstellung von leistungsfähigem und hochwertigem Forstvermehrungsgut für den klimaund standortgerechten Wald der Zukunft (FitForClim) –Teilprojekt 4. Großhansdorf, Germany, 66 p Search in Google Scholar

Lindgren D, Danusevicius D, Rosvall O (2009) Unequal deployment of clones to seed orchards by considering genetic gain, relatedness and gene diversity. Forestry: An International Journal of Forest Research 82(1):17-28. https://dx.doi.org/10.1093/forestry/cpn03310.1093/forestry/cpn033 Search in Google Scholar

Lindgren D, El-Kassaby YA (1989) Genetic consequences of combining selective cone harvesting and genetic thinning in clonal seed orchards. Silvae Genetica 38(2):65-70 Search in Google Scholar

Lindgren D, Matheson AC (1986) An algorithm for increasing the genetic quality of seed from seed orchards by using the better clones in higher proportions. Silvae Genetica 35(5-6):173-177 Search in Google Scholar

Lindgren D, Mullin TJ (1997) Balancing gain and relatedness in selection. Silvae Genetica 46(2):124-128 Search in Google Scholar

Lindgren D, Prescher F (2005) Optimal clone number for seed orchards with tested clones. Silvae Genetica 54(1-6):80. https://dx.doi.org/10.1515/sg-2005-001310.1515/sg-2005-0013 Search in Google Scholar

Lopez GA, Potts BM, Vaillancourt RE, Apiolaza LA (2003) Maternal and carryover effects on early growth of Eucalyptus globulus. Canadian Journal of Forest Research 33(11):2108-2115. https://dx.doi.org/10.1139/x03-13210.1139/x03-132 Search in Google Scholar

Lstibůrek M, El-Kassaby YA (2008) Advanced-generation seed orchard designs. Proceedings of the Seed Orchard Conference, 26-28 September 2007, Umeå, Sweden: 155-160 Search in Google Scholar

Lstibůrek M, El-Kassaby YA (2010) Minimum-inbreeding seed orchard design. Forest Science 56(6):603-608. https://dx.doi.org/10.1093/forestscience/56.6.603 Search in Google Scholar

Lstibůrek M, Stejskal J, Misevicius A, Korecký J, El-Kassaby YA (2015) Expansion of the minimum-inbreeding seed orchard design to operational scale. Tree Genetics & Genomes 11(1):1-8. https://dx.doi.org/10.1007/s11295-015-0842-510.1007/s11295-015-0842-5 Search in Google Scholar

MacLachlan IR, Wang T, Hamann A, Smets P, Aitken SN (2017) Selective breeding of lodgepole pine increases growth and maintains climatic adaptation. Forest Ecology and Management 391:404-416. https://dx.doi.org/https://doi.org/10.1016/j.foreco.2017.02.00810.1016/j.foreco.2017.02.008 Search in Google Scholar

McKeand E, Beineke F (1980) Sublining for half-sib breeding populations of forest trees. Silvae Genetica 29(1):14-17 Search in Google Scholar

Meißner M, Volmer K, Hardtke A, Stiehm C, Steiner W (2020) Bereitstellung von leistungsfähigem und hochwertigem Forstvermehrungsgut für den klimaund standortgerechten Wald der Zukunft (FitForClim) – Teilprojekt 1 –. Hann. Münden, Germany, 66 p Search in Google Scholar

Merzeau D, Alazard P, Canteloup D, Crémière L, Daubet A, Lesgourgues Y, Pastuszka P, Raffin A (2005) Genetic breeding of the maritime pine in Aquitaine: an exemplary success story. Pierroton, France: Groupe Pin Maritime du Futur, 31 p Search in Google Scholar

Montalvo AM, Ellstrand NC (2001) Nonlocal transplantation and outbreeding depression in the subshrub Lotus scoparius (Fabaceae). American Journal of Botany 88(2):258-269. https://dx.doi.org/10.2307/265701710.2307/2657017 Search in Google Scholar

Morgante M, Vendramin GG, Rossi P, Olivieri AM (1993) Selection against inbreds in early life-cycle phases in Pinus leucodermis Ant. Heredity 70(6):622-627. https://dx.doi.org/10.1038/hdy.1993.8910.1038/hdy.1993.89 Search in Google Scholar

Mullin TJ (2014) OPSEL 1.0: a computer program for optimal selection in forest tree breeding. Arbetsrapport från Skogforsk TechnicalReport Nr 841-2014, Report No: ISSN 1404-305X, 19 p Search in Google Scholar

Mullin TJ (2017) OPSEL 2.0: a computer program for optimal selection in tree breeding. Report No: ISSN 1404-305X, 24 p Search in Google Scholar

Mullin TJ, Persson T, Abrahamsson S, Andersson Gull B (2019) Effects of inbreeding depression on seed production in Scots pine (Pinus sylvestris). Canadian Journal of Forest Research 49(7):854-860. https://dx.doi.org/10.1139/cjfr-2019-004910.1139/cjfr-2019-0049 Search in Google Scholar

Namkoong G (1966) Inbreeding effects on estimation of genetic additive variance. Forest Science 12(1):8-13. https://dx.doi.org/10.1093/forestscience/12.1.8 Search in Google Scholar

Namkoong G, Bishir J (1987) The frequency of lethal alleles in forest tree populations. Evolution 41(5):1123-1126. https://doi.org/10.1111/j.1558-5646.1987.tb05882.x10.1111/j.1558-5646.1987.tb05882.x28563421 Search in Google Scholar

Oakley CG, Ågren J, Schemske DW (2015) Heterosis and outbreeding depression in crosses between natural populations of Arabidopsis thaliana. Heredity 115(1):73-82. https://dx.doi.org/10.1038/hdy.2015.1810.1038/hdy.2015.18481549326059971 Search in Google Scholar

Okada M, Kitamura K, Lian C, Goto S (2015) The effects of multilocus heterozygosity on the longevity of seedlings established on fallen logs in Picea jezoensis and Abies sachalinensis. Open Journal of Forestry Vol.05No.04:9. https://dx.doi.org/10.4236/ojf.2015.5403610.4236/ojf.2015.54036 Search in Google Scholar

Olsson T, Lindgren D, Li B (2001) Balancing genetic gain and relatedness in seed orchards. Silvae Genetica 50(5-6):222-226 Search in Google Scholar

Pakull B, Eusemann P, Wojacki J, Ahnert D, Liesebach H: Genetic diversity of seeds from four German Douglas fir (Pseudotsuga menziesii) seed orchards. unpublished Search in Google Scholar

Pâques LE (2013a) Forest tree breeding in Europe - Current State-of-the-Art and Perspectives. Springer, 527 p. https://doi.org/10.1007/978-94-007-6146-910.1007/978-94-007-6146-9 Search in Google Scholar

Pâques LE (2009) Growth rhythm parameters as components of hybrid vigour in young seedlings of hybrid larch (Larix decidua x L. kaempferi). 58(1-6):42. https://dx.doi.org/https://doi.org/10.1515/sg-2009-000610.1515/sg-2009-0006 Search in Google Scholar

Pâques LE (2013b) Introduction. In: Pâques EL (ed) Forest Tree Breeding in Europe: Current State-of-the-Art and Perspectives. Dordrecht © Springer Science+Business Media, pp 1-9. https://doi.org/10.1007/978-94-007-6146-9_110.1007/978-94-007-6146-9_1 Search in Google Scholar

Pupin S, Sebbenn AM, Cambuim J, da Silva AM, Zaruma DUG, Silva PHM, Rosse LN, Souza ICG, Marino CL, Moraes MLT (2019) Effects of pollen contamination and non-random mating on inbreeding and outbreeding depression in a seedling seed orchard of Eucalyptus urophylla. Forest Ecology and Management 437:272-281. https://dx.doi.org/https://doi.org/10.1016/j.foreco.2019.01.05010.1016/j.foreco.2019.01.050 Search in Google Scholar

Pyhäjärvi T, Kujala ST, Savolainen O (2020) 275 years of forestry meets genomics in Pinus sylvestris. Evolutionary Applications 13(1):11-30. https://dx.doi.org/10.1111/eva.1280910.1111/eva.12809696670831988655 Search in Google Scholar

Rau HM (1998) Vermehrungsgut von Samenplantagen im Vergleich zu handelsüblichem Material. AFZ-Der Wald 53(5):236-239 Search in Google Scholar

Rau HM, Schulzke R (2001) Beitrag forstlicher Samenplantagen bei der Bereitstellung herkunftsgesicherten Vermehrungsgutes. Proceedings of the FORUM Genetik-Wald-Forstwirtschaft: Herkunftssicherung und Zertifizierung von forstlichem Vermehrungsgut, June 11-13, 2001, Freiburg, Germany: 66-71 Search in Google Scholar

Rood SB, Goater LA, McCaffrey D, Montgomery JS, Hopkinson C, Pearce DW (2017) Growth of riparian cottonwoods: heterosis in some intersectional Populus hybrids and clonal expansion of females. Trees 31(3):1069-1081. https://dx.doi.org/10.1007/s00468-017-1531-910.1007/s00468-017-1531-9 Search in Google Scholar

Rosvall O, Jansson G, Andersson B, Ericsson T, Karlsson B, Sonesson J, Stener L-G (2001) Genetiska vinster i nuvarande och framtida fröplantager och klonblandningar. Uppsala (Sweden): SkogForsk, Technical Report, Report Number: Skogforsk-RED-1-2001, Report No: ISSN 1103-4580; TRN: SE0107372, 41 p Search in Google Scholar

Saksa T (2004) Regeneration process from seed crop to saplings-A case study in uneven-aged norway spruce-dominated stands in southern Finland. Silva Fennica 38(4):371-381. https://doi.org/10.14214/sf.40510.14214/sf.405 Search in Google Scholar

Sarvas R (1962) Investigations on the flowering and seed crop of Pinus silvestris. Helsinki, Finland, 198 p, ISBN 0026-1610 Search in Google Scholar

Schneck V (2001) Bestände und Samenplantagen von Gemeiner Kiefer. AFZ-Der Wald 56(5):232-233 Search in Google Scholar

Shull GH (1952) Beginnings of the heterosis concept. In: Gowen JW (ed) Heterosis. Iowa State College Press pp 14-48 Search in Google Scholar

Silva P, Brune A, Pupin S, Moraes M, Sebbenn A, de Paula R (2018) Maintenance of genetic diversity in Eucalyptus urophylla S. T. Blake populations with restriction of the number of trees per family. Silvae Genetica 67(1):34-40. https://dx.doi.org/10.2478/sg-2018-000510.2478/sg-2018-0005 Search in Google Scholar

Slavov GT, Howe GT, Adams WT (2005) Pollen contamination and mating patterns in a Douglas-fir seed orchard as measured by simple sequence repeat markers. Canadian Journal of Forest Research 35(7):1592-1603. https://doi.org/10.1139/x05-08210.1139/x05-082 Search in Google Scholar

Song J, Ratcliffe B, Kess T, Lai BS, Korecký J, El-Kassaby YA (2018) Temporal quantification of mating system parameters in a coastal Douglas-fir seed orchard under manipulated pollination environment. Scientific Reports 8(1):11593. https://dx.doi.org/10.1038/s41598-018-30041-410.1038/s41598-018-30041-4607275230072772 Search in Google Scholar

Sønstebø JH, Tollefsrud MM, Myking T, Steffenrem A, Nilsen AE, Edvardsen ØM, Johnskås OR, El-Kassaby YA (2018) Genetic diversity of Norway spruce (Picea abies (L.) Karst.) seed orchard crops: Effects of number of parents, seed year, and pollen contamination. Forest Ecology and Management 411:132-141. https://dx.doi.org/https://doi.org/10.1016/j.foreco.2018.01.00910.1016/j.foreco.2018.01.009 Search in Google Scholar

Stacy EA (2001) Cross-fertility in two tropical tree species: evidence of inbreeding depression within populations and genetic divergence among populations. American Journal of Botany 88(6):1041-1051. https://dx.doi.org/10.2307/265708610.2307/2657086 Search in Google Scholar

Stephan BR, Liesebach M (1996) Results of the IUFRO 1982 Scots pine (Pinus sylvestris L.) provenance experiment in southwestern Germany. Silvae Genetica 45(5-6):342-349 Search in Google Scholar

Stoehr MU, Ott P, Woods JH (2015) Inbreeding in mid-rotation coastal Douglas-fir: implications for breeding. Annals of Forest Science 72(2):195-204. https://dx.doi.org/10.1007/s13595-014-0414-010.1007/s13595-014-0414-0 Search in Google Scholar

Stoehr MU, Webber J, Woods JH (2004) Protocol for rating seed orchard seedlots in British Columbia: quantifying genetic gain and diversity. Forestry: An International Journal of Forest Research 77(4):297-303. https://dx.doi.org/10.1093/forestry/77.4.29710.1093/forestry/77.4.297 Search in Google Scholar

Talbert J (1979) An advanced-generation breeding plan for the NC State University-Industry pine tree improvement cooperative. Silvae Genetica 28(2/3):72-75 Search in Google Scholar

Templeton AR (1986) Coadaptation and outbreeding depression. In: Soule ME (ed) Conservation Biology-The Science of Scarcity and Diversity. Sinauer Associates, pp 105-116, ISBN ISSN: 0878937943 Search in Google Scholar

Torimaru T, Wang X-R, Fries A, Andersson B, Lindgren D (2009) Evaluation of pollen contamination in an advanced Scots pine seed orchard. Silvae Genetica 58(1-6):262-269. https://doi.org/10.1515/sg-2009-003310.1515/sg-2009-0033 Search in Google Scholar

Torimaru T, Wennström U, Andersson B, Almqvist C, Wang X-R (2013) Reduction of pollen contamination in Scots pine seed orchard crop by tent isolation. Scandinavian Journal of Forest Research 28(8):715-723. https://dx.doi.org/10.1080/02827581.2013.83829810.1080/02827581.2013.838298 Search in Google Scholar

Van Buijtenen JP (1975) The planning and strategy of seed orchard programmes, including economics. In: Faulkner R (ed) Seed orchards. London, UK: Forestry Commission, pp 9-24 Search in Google Scholar

Vanclay JK (1991) Seed orchard designs by computer. Silvae Genetica 40:89-91 Search in Google Scholar

Vergara R, White TL, Huber DA, Shiver BD, Rockwood DL (2004) Estimated realized gains for first-generation slash pine (Pinus elliottii var. elliottii) tree improvement in the southeastern United States. Canadian Journal of Forest Research 34(12):2587-2600. https://dx.doi.org/10.1139/x04-13610.1139/x04-136 Search in Google Scholar

Wang Q, Qi J, Cui X, Li W (2018) Application of improved genetic algorithm in clonal deployment for seed orchard (in Chinese). Sci. Silv. Sin. 54(4):30-37 Search in Google Scholar

White TL, Hodge G, Powell G (1993) An advanced-generation tree improvement plan for slash pine in the southeastern United States. Silvae Genetica 42(6):359-371 Search in Google Scholar

Williams CG, Savolainen O (1996) Inbreeding depression in conifers: Implications for breeding strategy. Forest Science 42(1):102-117. https://dx.doi.org/10.1093/forestscience/42.1.102 Search in Google Scholar

Wojacki J, Eusemann P, Ahnert D, Pakull B, Liesebach H (2019) Genetic diversity in seeds produced in artificial Douglas-fir (Pseudotsuga menziesii) stands of different size. Forest Ecology and Management 438:18-24. https://dx.doi.org/10.1016/j.foreco.2019.02.01210.1016/j.foreco.2019.02.012 Search in Google Scholar

Woods JH, Heaman JC (1989) Effect of different inbreeding levels on filled seed production in Douglas-fir. Canadian Journal of Forest Research 19(1):54-59. https://dx.doi.org/10.1139/x89-00710.1139/x89-007 Search in Google Scholar

Woods JH, Wang T, Aitken SN (2002) Effects of inbreeding on coastal Douglas-fir: nursery performance. Silvae Genetica 51(4):163-170 Search in Google Scholar

Wray N, Goddard M (1994) Increasing long-term response to selection. Genetics Selection Evolution 26(5):431. https://doi.org/10.1186/1297-9686-26-5-43110.1186/1297-9686-26-5-431 Search in Google Scholar

Wu H, Ivkovic M, Gapare W, Matheson A, Baltunis B, Powell M, McRae T (2008) Breeding for wood quality and profit in Pinus radiata: a review of genetic parameter estimates and implications for breeding and deployment. New Zealand Journal of Forestry Science 38(1):56-87 Search in Google Scholar

Yamashita M, Mullin TJ, Safarina S (2018) An efficient second-order cone programming approach for optimal selection in tree breeding. Optimization Letters 12(7):1683-1697. https://dx.doi.org/10.1007/s11590-018-1229-y10.1007/s11590-018-1229-y Search in Google Scholar

Yang B, Sun H, Qi J, Niu S, El-Kassaby YA, Li W (2020) Improved genetic distance-based spatial deployment can effectively minimize inbreeding in seed orchard. Forest Ecosystems 7(1):10. https://dx.doi.org/10.1186/s40663-020-0220-010.1186/s40663-020-0220-0 Search in Google Scholar

Yao J, Li H, Ye J, Shi L (2016) Relationship between parental genetic distance and offspring’s heterosis for early growth traits in Liriodendron: implication for parent pair selection in cross breeding. New Forests 47(1):163-177. https://dx.doi.org/10.1007/s11056-015-9508-210.1007/s11056-015-9508-2 Search in Google Scholar

Zanewich KP, Pearce DW, Rood SB (2018) Heterosis in poplar involves phenotypic stability: cottonwood hybrids outperform their parental species at sub-optimal temperatures. Tree Physiology 38(6):789-800. https://dx.doi.org/10.1093/treephys/tpy01910.1093/treephys/tpy01929509939 Search in Google Scholar

Zobel BJ, Weir RJ, Jett JB (1972) Breeding Methods to Produce Progeny for Advanced-generation Selection and to Evaluate Parent Trees. Canadian Journal of Forest Research 2(3):339-345. https://dx.doi.org/10.1139/x72-05210.1139/x72-052 Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo