Otwarty dostęp

Geostatistical methods for estimation of toxicity of marine bottom sediments based on the Gdańsk Basin area


Zacytuj

[1] ASTM (American Society for Testing and Materials). (2004). Standard Test Method for Assessing the Microbial Detoxification of Chemically Contaminated Water and Soil Using a Toxicity Test with a Luminescent Marine Bacterium. ASTM D5660-96. USA. Search in Google Scholar

[2] Azur Environmental (1998). Microtox Basic Solid-phase Test (Basic SPT). Carlsbad, CA, USA. Search in Google Scholar

[3] Bolałek J., Graca B. & Burska D. (2011a). Skład chemiczny wód interstycjalnych. in: Uścinowicz Sz. (Eds.), Geochemia osadów powierzchniowych Morza Bałtyckiego (pp. 309–319), Warszawa: PIG-PIB. ISBN 978-83-7538-813-8 Search in Google Scholar

[4] Bolałek J., Graca B. & Burska D. (2011b), Gazy w osadach Morza Bałtyckiego, in: Uścinowicz Sz. (Eds.), Geochemia osadów powierzchniowych Morza Bałtyckiego (pp. 320–325), Warszawa: PIG-PIB. ISBN 978-83-7538-813-8 Search in Google Scholar

[5] Calace N., Ciardullo S., Petronio B., Pietrantonio M., Abbodanzi F., Campisi T. & Cardellicchio N. (2005). Influence of chemical parameters (heavy metals, organic matter, sulphur and nitrogen) on toxicity of sediments from the Mar Piccolo (Taranto, Ionian Sea, Italy). Microchemical Journal. 79: 243–248.. DOI: 10.1016/j.microc.2004.10.005. http://dx.doi.org/10.1016/j.microc.2004.10.00510.1016/j.microc.2004.10.005 Search in Google Scholar

[6] Campisi T., Abbondanzi F., Casado-Martinez C., DelValls T.A., Guerra R. & Iacondini A. (2005). Effect of sediment turbidity and color on light output measurement for Microtoxs Basic Solid-Phase Test. Chemosphere 60: 9–15. DOI: 10.1016/j.chemosphere.2004.12.052. http://dx.doi.org/10.1016/j.chemosphere.2004.12.05210.1016/j.chemosphere.2004.12.052 Search in Google Scholar

[7] Chen Y.X, Chen H.L, Xu Y.T & Shen M.W. (2004). Irreversible sorption of pentachlorophenol to sediment:experimental observations. Environment International 30(1):31–37. DOI: 10.1016/S0160-4120(03)00145-4 http://dx.doi.org/10.1016/S0160-4120(03)00145-410.1016/S0160-4120(03)00145-4 Search in Google Scholar

[8] Cinti D., Poncia P.P., Procesi M., Galli G. & Quattrocchi F. (2013). Geostatistical techniques application to dissolved radon hazard mapping: An example from the western sector of the Sabatini Volcanic District and the Tolfa Mountains (central Italy). Applied Geochemistry 35: 312–324. DOI: 10.1016/j.apgeochem.2013.05.005. http://dx.doi.org/10.1016/j.apgeochem.2013.05.00510.1016/j.apgeochem.2013.05.005 Search in Google Scholar

[9] Cleveland L., Litte E.E., Petty J.D., Johnson B.T., Lebo J.A., Orazio C.E., Dionne J. & Crocket A. (1997). Toxicological and chemical screening of Antarctica sediments: Use of whole sediment toxicity testes Microtox, Mutatox and Semipermeable Membrane. Marine Pollution Bulletin 34: 194–202. ISSN: 0025-326X. http://dx.doi.org/10.1016/S0025-326X(96)00088-410.1016/S0025-326X(96)00088-4 Search in Google Scholar

[10] Coya B., Marañón E. & Sastre H. (2000). Ecotoxicity assessment of slag generated in the process of recycling lead from waste batteries. Resources Conservation and Recycling 29: 291–300. ISSN: 0921-3449. DOI: 10.1016/S0921-3449(00)00054-9. http://dx.doi.org/10.1016/S0921-3449(00)00054-910.1016/S0921-3449(00)00054-9 Search in Google Scholar

[11] Coz A., Rodríguez-Obeso O., Alonso-Santurde R., Álvarez-Guerra M., Andrés A., Viguri J.R., Mantzavinos D. & Kalogerakis N. (2008). Toxicity bioassays in core sediments from the Bay of Santander, northern Spain. Environmental Research 106: 304–312. DOI: 10.1016/j.envres.2007.05.009. http://dx.doi.org/10.1016/j.envres.2007.05.00910.1016/j.envres.2007.05.00917619000 Search in Google Scholar

[12] Casado-Martínez M.C., Campisi T., Díaz A., Lo Re R., Obispo R., Postma J.F., Riba I., Sneekes A.C., Buceta J.L. & DelValls T.A. (2006). Interlaboratory assessment of marine bioassays to evaluate the environmental quality of coastal sediments in Spain. II. Bioluminescence inhibition test for rapid sediment toxicity assessment. Ciencias Marinas 32: 129–138. ISSN: 0185-3880. 10.7773/cm.v32i12.1031 Search in Google Scholar

[13] Graca B. & Burska D. (2011). Czynniki kształtujące zawartość węgla organicznego i substancji biogenicznych w osadach. in: Uścinowicz Sz. (Eds.), Geochemia osadów powierzchniowych Morza Bałtyckiego (pp. 309–319), Warszawa: PIG-PIB. ISBN 978-83-7538-813-8 Search in Google Scholar

[14] Granberg M.E., Gunnarsson J..S, Hedman J.E., Rosenberg R. & Jonsson P. (2008). Bioturbation-driven release of organic contaminants from Baltic Sea sediments mediated by the invading polychaete Marenzelleria neglecta. Environ Sci Technol. 42(4): 1058–65. http://dx.doi.org/10.1021/es071607j10.1021/es071607j18351072 Search in Google Scholar

[15] Hedman J.E. (2008). Fate of contaminants in Baltic Sea sediment ecosystems: the role of bioturbation. Doctoral Thesis. Stockholm University. 10.3354/meps07218 Search in Google Scholar

[16] Jerosch K. (2013). Geostatistical mapping and spatial variability of surficial sediment types on the Beaufort Shelf based on grain size data. Journal of Marine Systems 127: 5–13. DOI: 10.1016/j.jmarsys.2012.02.013. http://dx.doi.org/10.1016/j.jmarsys.2012.02.01310.1016/j.jmarsys.2012.02.013 Search in Google Scholar

[17] Johanson K., ver Hoef J.M. & Krivoruchko K. (2003). ArcGIS 9. Using ArcGIS Geostatistical Analyst. ESRI. DOI 10.1007/s00704-009-0140-y Search in Google Scholar

[18] Keddy C.J., Greene J.C. & Bonnell M.A. (1995). Review of whole-organism bioassays: soil, freshwater sediment, and freshwater assessment in Canada. Ecotoxicology and Environmental Safety 30: 221–251. ISSN: 0147-6513. http://dx.doi.org/10.1006/eesa.1995.102710.1006/eesa.1995.10277541337 Search in Google Scholar

[19] Kobusińska M., Skauradszun M. & Niemirycz E. (2014). Factors determining the accumulation of pentachlorophenol — a precursor of dioxins in bottom sediments of the Gulf of Gdańsk (Baltic Sea). Oceanological and Hydrobiological Studies 43(2): 154–164. DOI:10.2478/S13545-014-0128-9. http://dx.doi.org/10.2478/s13545-014-0128-910.2478/s13545-014-0128-9 Search in Google Scholar

[20] Konat J. & Kowalewska G. (2001). Polychlorinated biphenyls PCBs in sediments of the southern Baltic Sea trends and fate. The Science of the Total Environment 280: 1–15. DOI: 10.1016/S0048-9697(01)00785-9. http://dx.doi.org/10.1016/S0048-9697(01)00785-910.1016/S0048-9697(01)00785-9 Search in Google Scholar

[21] Kwan K.K. & Dutka B.J. (1995), Comparative assessment of two Solid-Phase toxicity bioassays: The Direct Sediment Toxicity Testing Procedure (DSTTP) and Microtox Solid Phase Test (SPT). Bulletin of Environmental Contamination and Toxicology 55: 338–346. DOI: 10.1007/BF00206670. http://dx.doi.org/10.1007/BF0020667010.1007/BF00206670 Search in Google Scholar

[22] Lahr J., Maas-Diepeveen J.L., Stuijfzand S.C., Leonards P.E.G., Druke J.M., Lucker S., Espeldoorn A., Kerkum L.C.M., van Stee L.L.P. & Hendriks A.J. (2003). Responses in sediment bioassays used in the Netherlands: can observed toxicity be explained by routinely monitored priority pollutants? Water Research 37: 1691–1710.. DOI: 10.1016/S0043-1354(02)00562-6. http://dx.doi.org/10.1016/S0043-1354(02)00562-610.1016/S0043-1354(02)00562-6 Search in Google Scholar

[23] Larsson, P., Andersson, A., Bromam, D., Nordback, J. & Lundberg, E. (2000). Persistent organic pollutants (POPs) in the pelagic systems. Ambio 29(4): 202–209. DOI: 10.1579/0044-7447-29.4.202. 10.1579/0044-7447-29.4.202 Search in Google Scholar

[24] Łukawska-Matuszewska K., Burska D. & Niemirycz E. (2009). Toxicity assessment by Microtox in sediments, pore waters and sediment saline elutriates in the Gulf of Gdańsk (Baltic Sea). Clean-Soil, Air, Water 37: 592–598. DOI: 10.1002/clen.200900021 http://dx.doi.org/10.1002/clen.20090002110.1002/clen.200900021 Search in Google Scholar

[25] Macken A., Giltrap M., Foley B., McGovern E., McHugh B. & Davoren M. (2008). An integrated approach to the toxicity assessment of Irish marine sediments: Validation of established marine bioassays for the monitoring of Irish marine sediments. Environment International 34: 1023–1032. DOI: 10.1016/j.envint.2008.08.013. ISSN: 0160-4120. http://dx.doi.org/10.1016/j.envint.2008.03.00510.1016/j.envint.2008.03.00518456331 Search in Google Scholar

[26] Mamindy-Pajany Y., Geret F., Roméo M., Hurel Ch. & Marmier N. (2012). Ex situ remediation of contaminated sediments using mineral additives: Assessment of pollutant bioavailability with the Microtox solid phase test. Chemosphere 86:1112–1116. DOI: 10.1016/j.chemosphere.2011.12.001. http://dx.doi.org/10.1016/j.chemosphere.2011.12.00110.1016/j.chemosphere.2011.12.00122197312 Search in Google Scholar

[27] Morales-Caselles C., Kalman J., Micaelo C., Ferreira A.M., Vale C., Riba I. & DelValls T.A. (2008). Sediment contamination, bioavailability and toxicity of sediments affected by an acute oil spill: four years after the sinking of the tanker Prestige. Chemosphere 71: 1207–1213. DOI: 10.1016/j.chemosphere.2007.12.013. http://dx.doi.org/10.1016/j.chemosphere.2007.12.01310.1016/j.chemosphere.2007.12.01318262592 Search in Google Scholar

[28] Morales-Caselles C., Riba I. & Ángel DelValls T. (2009). A weight of evidence approach for quality assessment of sediments impacted by an oil spill: The role of a set of biomarkers as a line of evidence. Marine Environmental Research 67: 31–37. DOI: 10.1016/j.marenvres.2008.10.003. http://dx.doi.org/10.1016/j.marenvres.2008.10.00310.1016/j.marenvres.2008.10.00319041131 Search in Google Scholar

[29] Niemirycz E., Nitchthauser J., Staniszewska M., Nałęcz-Jawacki G. & Bolałek J. (2007). The Microtox biological test of surface waters and sediment in Poland. Oceanological and Hydrobiological Studies 36: 151–163. DOI: 10.2478/v10009-007-0030-5. http://dx.doi.org/10.2478/v10009-007-0030-510.2478/v10009-007-0030-5 Search in Google Scholar

[30] Niemirycz E. (2008). Halogenated organic compounds in the environment in relation to climate change. Warsaw: Environmental Monitoring Library. Search in Google Scholar

[31] Niemirycz E. (2011). Dopływ substancji chemicznych rzekami, in: Uścinowicz Sz. (Eds.), Geochemia osadów powierzchniowych Morza Bałtyckiego (pp. 91–106). Warszawa: PIG-PIB. ISBN 978-83-7538-813-8. Search in Google Scholar

[32] Niemirycz E. & Jankowska D. (2011). Concentration and profiles of PCDD/Fs in sediments of major polish rivers and the Gdańsk Basin — Baltic Sea. Chemosphere 85: 525–532. DOI: 10.1016/j.chemosphere.2011.08.014. http://dx.doi.org/10.1016/j.chemosphere.2011.08.01410.1016/j.chemosphere.2011.08.014 Search in Google Scholar

[33] Park K. & Hee S.Q. (2001). Effect of dust on the viability of Vibrio fischeri in the Microtox test. Ecotoxicology and Environmental Safety 50: 189–195. DOI: 10.1006/eesa.2001.2109. http://dx.doi.org/10.1006/eesa.2001.210910.1006/eesa.2001.2109 Search in Google Scholar

[34] Parsons T.R., Maaita Y., Lalli, C.M. (1985). A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, Oxford. Search in Google Scholar

[35] Pazdro K. (2004). Persistent organic pollutants in sediments from the Gulf of Gdańsk. Annual Set the Environment Protection. 6: 63–76. Search in Google Scholar

[36] Pedersen E., Bjornstad E., Andersen H.V., Kjolholt J. & Poll C. (1998). Characterization of sediments from Copenhagen Harbour by use of biotestes. Water Science Technology 37: 233–240. ISSN: 0273-1223. http://dx.doi.org/10.1016/S0273-1223(98)00203-010.1016/S0273-1223(98)00203-0 Search in Google Scholar

[37] Piccini Ch., Marchetti A. & Francaviglia R. (2014). Estimation of soil organic matter by geostatistical methods: Use of auxiliary information in agricultural and environmental assessment. Ecological Indicators 36: 301–314. DOI: 10.1016/j.ecolind.2013.08.009. http://dx.doi.org/10.1016/j.ecolind.2013.08.00910.1016/j.ecolind.2013.08.009 Search in Google Scholar

[38] Renz J.R. & Forster S. (2013). Are similar worms different? A comparative tracer study on bioturbation in the three sibling species Marenzelleria arctia, M. viridis, and M. neglecta from the Baltic Sea. Limnol. Oceanogr. 58(6): 2046–2058. DOI: 10.4319/lo.2013.58.6.2046. http://dx.doi.org/10.4319/lo.2013.58.6.204610.4319/lo.2013.58.6.2046 Search in Google Scholar

[39] Ricking M., Beckman E. & Svenson A. (2002) PAHs and Microtox acute toxicity in contaminated sediments in Swede. J. Soils Sed. 2(3):129–136. DOI: 10.1007/BF02988464. http://dx.doi.org/10.1007/BF0298846410.1007/BF02988464 Search in Google Scholar

[40] Sahebjalal E. (2012). Application of Geostatistical Analysis for Evaluating Variation in Groundwater Characteristics. World Applied Sciences Journal 18(1): 135–141. DOI: 10.5829/idosi.wasj.2012.18.01.664 Search in Google Scholar

[41] Salizzato M., Pavoni B., Ghirardini A.V. & Ghetti P.F. (1998). Sediment toxicity measured using Vibrio fischeri related to the concentrations of organic (PCBs, PAHs) and inorganic (metals, sulphur) pollutants. Chemosphere 36: 2949–2968. DOI: 10.1016/S0045-6535(98)00001-0. http://dx.doi.org/10.1016/S0045-6535(98)00001-010.1016/S0045-6535(98)00001-0 Search in Google Scholar

[42] Serafim A., Company R., Lopes B., Rereira C., Cravo A., Fonseca V.F., França S., Bebianno M.J. & Cabral H.N. (2013). Evaluation of sediment toxicity in different Portuguese estuaries: Ecological impact of metals and polycyclic aromatic hydrocarbons. Estuarine, Costal and Shelf Science 130: 30–41. DOI: 10.1016/j.ecss.2013.04.018. http://dx.doi.org/10.1016/j.ecss.2013.04.01810.1016/j.ecss.2013.04.018 Search in Google Scholar

[43] Smith J. & Smith P. (2007). Introduction to Environmental Modelling. New York: Oxford University Press. Search in Google Scholar

[44] Sundqvist K. (2009). Sources of dioxins and other POPs to the marine environment: Identification and apportionment using pattern analysis and receptor modeling. Doctoral Thesis. Umeå University. Search in Google Scholar

[45] Svenson A., Edsholt E., Ricking M., Remberger M. & Röttorp J. (1996). Sediment contaminats and Microtox Toxicity Tested in a Direct Contact Exposure Test. Environmental Toxicology and Water Quality. An International Journal 11: 293–300. DOI: 10.1002/(SICI)1098-2256(1996)11:4〈293::AID-TOX2〉3.0.CO;2-4 10.1002/(SICI)1098-2256(1996)11:4<293::AID-TOX2>3.0.CO;2-4 Search in Google Scholar

[46] Szefer P. (2002). Metals, metalloids and radionuclides in the Baltic Sea ecosystem. Elsevier Science. B.V., Amsterdam. Search in Google Scholar

[47] Szymczak E., Skauradszun M. & Niemirycz E. (2013). Litologiczne uwarunkowania toksyczności powierzchniowych osadów dennych terenów ujściowych cieków Zatoki Gdańskiej. International Scientific Conference „Dioxins in the environment — science for health”. Search in Google Scholar

[48] Świderska-Bróż M. (1987). Zjawiska sorpcji w wodach naturalnych oraz procesach oczyszczania wód. Ochrona środowiska. Wydawnictwo PZITS 521-2/3(32–33): 9–14 Search in Google Scholar

[49] Urbański J. (2012). GIS w badaniach przyrodniczych. Gdańsk: Wydawnictwo Uniwersytetu Gdanskiego. Search in Google Scholar

[50] Urbański J. (2007). Fizyczna typologia dna Zatoki Gdańskiej. Atlas cyfrowy. Pracownia Geoinformacji, Zakład Oceanografii Fizycznej, Instytut Oceanografii UG. Search in Google Scholar

[51] Uścinowicz Sz. (2011). Współczesne osady powierzchniowe i procesy sedymentacyjne. in: Uścinowicz Sz. (Eds.), Geochemia osadów powierzchniowych Morza Bałtyckiego (pp. 309–319), Warszawa: PIG-PIB. ISBN 978-83-7538-813-8 Search in Google Scholar

[52] Van den Brink P.J. & Kater B.J. (2006). Chemical and biological evaluation of sediments from the Wadden Sea, the Netherlands. Ecotoxicology 15: 451–460. DOI: 10.1016/j.trac.2009.03.006. http://dx.doi.org/10.1007/s10646-006-0080-610.1016/j.trac.2009.03.006 Search in Google Scholar

[53] Vigano L., Arillo A., Buffagni A., Camusso M., Ciannarella R., Crosa G., Falugi C., Galassi S., Guzzella L., Lopez A., Mingazzini M., Pagnotta R., Patrolecco L., Tartari G. & Valsecchi S. (2003). Quality assessment of bed sediments of the Po River (Italy). Water Research 37: 501–518. DOI: 10.1016/S0043-1354(02)00109-4. http://dx.doi.org/10.1016/S0043-1354(02)00109-410.1016/S0043-1354(02)00109-4 Search in Google Scholar

[54] Viguri J., Irabien M.J., Yusta I., Soto J., Gómez J., Rodríguez P., Martínez M., Irabien J.A. & Coz A. (2007). Physico-chemical and toxicological characterization of the historic estuarine sediments: a multidisciplinary approach. Environment International 33: 436–444. DOI:10.1016/j.envint.2006.10.005 http://dx.doi.org/10.1016/j.envint.2006.10.00510.1016/j.envint.2006.10.005 Search in Google Scholar

[55] Webster R. & Oliver M.A. (2001). Geostatistics for Environmental Scientists. Wiley & Sons Ltd. Chichester. Search in Google Scholar

[56] Zalewski M. (2011). Odpływ Wisłą związków azotu i fosforu na tle zmian produkcji pierwotnej rejonu Basenu Gdańskiego. Doctoral Thesis. University of Gdansk. Search in Google Scholar

[57] Zhang J & He M. (2013). Effect of dissolved organic matter on sorption and desorption of phenanthrene onto black carbon. Journal of Environmental Sciences 25(12):2378–2383. DOI: 10.1016/S1001-0742(12)60328-3 http://dx.doi.org/10.1016/S1001-0742(12)60328-310.1016/S1001-0742(12)60328-3 Search in Google Scholar

eISSN:
1897-3191
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Chemistry, other, Geosciences, Life Sciences