Otwarty dostęp

Stages of the Baltic Sea evolution in the geochemical record and radiocarbon dating of sediment cores from the Arkona Basin


Zacytuj

[1] Andrén, E., Andrén, T. & Sohlenius, G. (2000). The Holocene history of the southwestern Baltic Sea as reflected in a sediment core from the Bornholm Basin. Boreas 29: 233–250. DOI: 10.1080/030094800424259. http://dx.doi.org/10.1111/j.1502-3885.2000.tb00981.x10.1111/j.1502-3885.2000.tb00981.x Search in Google Scholar

[2] Bennett, K.D. (1996). Determination of the number of zones in a biostratigraphical sequence. New Phytol. 132: 155–170. DOI: 10.1111/j.1469-8137.1996.tb04521.x. http://dx.doi.org/10.1111/j.1469-8137.1996.tb04521.x10.1111/j.1469-8137.1996.tb04521.x Search in Google Scholar

[3] Bennike, O. & Jensen, J.B. (2013). A Baltic Ice Lake lowstand of latest Allerød age in the Arkona Basin, southern Baltic Sea. Geol. Surv. Denmark Greenl. Bull. 28: 17–20. 10.34194/geusb.v28.4710 Search in Google Scholar

[4] Berglund, B.E., Sandgren, P., Barnekow, L., Hannon, G., Jiang, H. et al. (2005). Early Holocene history of the Baltic Sea, as reflected in coastal sediments in Blekinge, southeastern Sweden. Quat. Int. 130: 111–139. DOI: 10.1016/j.quaint.2004.04.036. http://dx.doi.org/10.1016/j.quaint.2004.04.03610.1016/j.quaint.2004.04.036 Search in Google Scholar

[5] Bitinas, A. & Damušytė, A. (2004). The Littorina Sea at the Lithuanian Martitimie region. Polish Geol. Inst. Spec. Pap. 11: 37–46. Search in Google Scholar

[6] Björck, S. (1995). A review of the history of the Baltic Sea, 13.0-8.0 ka BP. Quat. Int. 27: 19–40. DOI: 10.1016/1040-6182(94)00057-C. http://dx.doi.org/10.1016/1040-6182(94)00057-C10.1016/1040-6182(94)00057-C Search in Google Scholar

[7] Björck, S., Andrén, T. & Bo Jensen, J. (2008). An attempt to resolve the partly conflicting data and ideas on the Ancylyus-Littorina transition. Polish Geol. Inst. Spec. Pap. 23: 21–26. Search in Google Scholar

[8] Borówka, R.K. & Cedro, B. (2011). Holocene marine ingressions in the coastal zone of the pomeranian bay based on radiocarbon assays. Geochronometria 38: 85–92. DOI: 10.2478/s13386-011-0009-6. http://dx.doi.org/10.2478/s13386-011-0009-610.2478/s13386-011-0009-6 Search in Google Scholar

[9] Borówka, R.K., Osadczuk, A., Witkowski, A., Wawrzyniak-Wydrowska, B. & Duda, T. (2005). Late Glacial and Holocene depositional history in the eastern part of the Szczecin Lagoon (Great Lagoon) basin-NW Poland. Quat. Int. 130: 87–96. DOI: 10.1016/j.quaint.2004.04.034. http://dx.doi.org/10.1016/j.quaint.2004.04.03410.1016/j.quaint.2004.04.034 Search in Google Scholar

[10] Boyle, J.F. (2001). Inorganic geochemical methods in palaeolomnology. In W.M. Last, J.P. Smol (Eds.), Tracking Enviromental Change Using Lake Sediments, Volume 2: Physical and Geochemical Methods (pp. 83–141). Dordrecht-Boston-London: Kluwer Academic Publishers. 10.1007/0-306-47670-3_5 Search in Google Scholar

[11] Emelyanov, E.M. & Vaikutienė, G. (2013). Holocene environmental changes during transition Ancylus-Litorina stages in the Gdansk Basin, south-eastern Baltic Sea. Baltica 26: 71–82. DOI: 10.5200/baltica.2013.26.08. http://dx.doi.org/10.5200/baltica.2013.26.0810.5200/baltica.2013.26.08 Search in Google Scholar

[12] Grimm, E.C. (1987). CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput. Geosci. 13: 13–35. DOI: 10.1016/0098-3004(87)90022-7. http://dx.doi.org/10.1016/0098-3004(87)90022-710.1016/0098-3004(87)90022-7 Search in Google Scholar

[13] Higgins, J.A. & Schrag, D.P. (2010). Constraining magnesium cycling in marine sediments using magnesium isotopes. Geochim. Cosmochim. Acta 74: 5039–5053. DOI: 10.1016/j.gca.2010.05.019. http://dx.doi.org/10.1016/j.gca.2010.05.01910.1016/j.gca.2010.05.019 Search in Google Scholar

[14] Jensen, J.B., Bennike, O., Witkowski, A., Lemke, W. & Kuijpers, A. (1997). The Baltic Ice Lake in the southwestern Baltic: Sequence-, chrono- and biostratygraphy. Boreas 26: 217–236. DOI: 10.1111/j.1502-3885.1997.tb00853.x. http://dx.doi.org/10.1111/j.1502-3885.1997.tb00853.x10.1111/j.1502-3885.1997.tb00853.x Search in Google Scholar

[15] Jensen, J.B., Bennike, O., Witkowski, A., Lemke, W. & Kuijpers, A. (1999). Early Holocene history of the southwestern Baltic Sea: The Ancylus Lake stage. Boreas 28: 437–453. DOI: 10.1111/j.1502-3885.1999.tb00233.x. http://dx.doi.org/10.1080/03009489942196610.1111/j.1502-3885.1999.tb00233.x Search in Google Scholar

[16] Juggins, S. (2013). rioja: Analysis of Quaternary Science Data. R package version (0.8–5). http://cran.r-project.org/package=rioja Search in Google Scholar

[17] Kortekaas, M., Murray, A., Sandgren, P. & Björck, S. (2007). OSL chronology for a sediment core from the southern Baltic Sea: A continuous sedimentation record since deglaciation. Quat. Geochronol. 2: 95–101. DOI: 10.1016/j.quageo.2006.05.036. http://dx.doi.org/10.1016/j.quageo.2006.05.03610.1016/j.quageo.2006.05.036 Search in Google Scholar

[18] Kostecki, R. & Janczak-Kostecka, B. (2012). Holocene environmental changes in the south-western Baltic Sea reflected by the geochemical data and diatoms of the sediment cores. J. Mar. Syst. 105–108: 106–114. DOI: 10.1016/j.jmarsys.2012.06.005. http://dx.doi.org/10.1016/j.jmarsys.2012.06.00510.1016/j.jmarsys.2012.06.005 Search in Google Scholar

[19] Lagerlund, E., Malmberg Persson, K., Krzyszkowski, D., Johansson, P., Dobracka, E. et al. (1995). Unexpected ice flow directions during the Late Weichselian deglaciation of the South Baltic area indicated by a new lithostratigraphy in NW Poland and NE Germany. Quat. Int. 28: 127–144. DOI: 10.1016/1040-6182(95)00028-H. http://dx.doi.org/10.1016/1040-6182(95)00028-H10.1016/1040-6182(95)00028-H Search in Google Scholar

[20] Lampe, R. (2005). Lateglacial and Holocene water-level variations along the NE German Baltic Sea coast: Review and new results. Quat. Int. 133–134: 121–136. DOI: 10.1016/j.quaint.2004.10.014. http://dx.doi.org/10.1016/j.quaint.2004.10.00510.1016/j.quaint.2004.10.014 Search in Google Scholar

[21] Lemke, W., Endler, R., Tauber, F., Jensen, J.B. & Bennike, O. (1998). Late- and postglacial sedimentation in the Tromper Wiek northeast of Rügen (western Baltic). Meyniana 50: 155–173. Search in Google Scholar

[22] Lougheed, B.C., Filipsson, H.L. & Snowball, I. (2013). Large spatial variations in coastal 14C reservoir age — A case study from the Baltic Sea. Clim. Past 9: 1015–1028. DOI: 10.5194/cp-9-1015-2013. http://dx.doi.org/10.5194/cp-9-1015-201310.5194/cp-9-1015-2013 Search in Google Scholar

[23] Mörner, N.-A. (1976). Eustatic changes during the last 8,000 years in view of radiocarbon calibration and new information from the Kattegatt region and other northwestern European coastal areas. Palaeogeogr. Palaeoclimatol. Palaeoecol. 19: 63–85. DOI: 10.1016/0031-0182(76)90042-0. http://dx.doi.org/10.1016/0031-0182(76)90042-010.1016/0031-0182(76)90042-0 Search in Google Scholar

[24] Moros, M., Lemke, W., Kuijpers, A., Endler, R., Jensen, J.B. et al. (2002). Regressions and transgressions of the Baltic basin reflected by a new high-resolution deglacial and postglacial lithostratigraphy for Arkona Basin sediments (western Baltic Sea). Boreas 31: 151–162. DOI: 10.1111/j.1502-3885.2002.tb01063.x. http://dx.doi.org/10.1080/03009480232012995310.1111/j.1502-3885.2002.tb01063.x Search in Google Scholar

[25] Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G. et al. (2013). Intcal13 and marine13 radiocarbon age calibration curves 0–50,000 years cal bp. Radiocarbon 55: 1869–1887. DOI: 10.2458/azu_js_rc.55.16947. http://dx.doi.org/10.2458/azu_js_rc.55.1694710.2458/azu_js_rc.55.16947 Search in Google Scholar

[26] Rößler, D., Moros, M. & Lemke, W. (2011). The Littorina transgression in the southwestern Baltic Sea: New insights based on proxy methods and radiocarbon dating of sediment cores. Boreas 40: 231–241. DOI: 10.1111/j.1502-3885.2010.00180.x. http://dx.doi.org/10.1111/j.1502-3885.2010.00180.x10.1111/j.1502-3885.2010.00180.x Search in Google Scholar

[27] Rotnicki, K. (2009). Identfikacja, wiek i przyczyny holocenskich ingresji i regresji Baltyku na polskim wybrzezu srodkowym [Identification, age and causes of the Holocene transgressions and regressions of the Baltic on the Polish Middle Coast]. Smołdzino: Wydawnictwo Smołdzinskiego Parku Narodowego. Search in Google Scholar

[28] Schmölcke, U., Endtmann, E., Klooss, S., Meyer, M., Michaelis, D. et al. (2006). Changes of sea level, landscape and culture: A review of the south-western Baltic area between 8800 and 4000BC. Palaeogeogr. Palaeoclimatol. Palaeoecol. 240: 423–438. DOI: 10.1016/j.palaeo.2006.02.009. http://dx.doi.org/10.1016/j.palaeo.2006.02.00910.1016/j.palaeo.2006.02.009 Search in Google Scholar

[29] Sohlenius, G., Emeis, K.-C., Andrén, E., Andrén, T., Kohly, A. (2001). Development of anoxia during the Holocene fresh-brackish water transition in the Baltic Sea. Mar. Geol. 177: 221–242. DOI: 10.1016/S0025-3227(01)00174-8. http://dx.doi.org/10.1016/S0025-3227(01)00174-810.1016/S0025-3227(01)00174-8 Search in Google Scholar

[30] Stuiver, M. & Reimer, P.J. (1993). Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35: 215–230. 10.1017/S0033822200013904 Search in Google Scholar

[31] Turekian, K.K. (1964). The marine geochemistry of strontium. Geochim. Cosmochim. Acta 28: 1479–1496. DOI: 10.1016/0016-7037(64)90163-2. http://dx.doi.org/10.1016/0016-7037(64)90163-210.1016/0016-7037(64)90163-2 Search in Google Scholar

[32] Witak, M. & Dunder, J. (2007). Holocene diatom biostratigraphy of the SW Gulf of Gdańsk, Southern Baltic Sea (part II). Oceanol. Hydrobiol. Stud. 36: 3–20. DOI: 10.2478/v10009-007-0021-6. http://dx.doi.org/10.2478/v10009-007-0021-610.2478/v10009-007-0021-6 Search in Google Scholar

[33] Witkowski, A. (1994). Recent and fossil diatom flora of the Gulf of Gdańsk the Southern Baltic Sea. Bibl. Diatomol. 28: 1–313. Search in Google Scholar

[34] Witkowski, A., Cedro, B., Kierzek, A. & Baranowski, D. (2009). Diatoms as a proxy in reconstructing the Holocene environmental changes in the south-western Baltic Sea: The lower Rega River Valley sedimentary record. Hydrobiologia 631: 155–172. http://dx.doi.org/10.1007/s10750-009-9808-710.1007/s10750-009-9808-7 Search in Google Scholar

[35] Andrén, E., Andrén, T., Sohlenius, G. (2000). The Holocene history of the southwestern Baltic Sea as reflected in a sediment core from the Bornholm Basin. Boreas 29, 233–250. DOI: 10.1080/030094800424259. http://dx.doi.org/10.1111/j.1502-3885.2000.tb00981.x10.1111/j.1502-3885.2000.tb00981.x Search in Google Scholar

eISSN:
1897-3191
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Chemistry, other, Geosciences, Life Sciences