Otwarty dostęp

Effect of temperature on physiology and bioenergetics of adult Harris mud crab Rhithropanopeus harrisii (Gould, 1841) from the southern Baltic Sea


Zacytuj

[1] Bacevičius, E. & Gasiūnaitė Z.R. (2008). Two crab species-Chinese mitten crab (Eriocheir sinensis Milne-Edwards) and mud crab (Rhithropanopeus harrisii Gould ssp. Tridentatus Maitland) in the Lithuanian coastal waters, Baltic Sea. Trans. Wat. Bull. 2: 63–68. DOI: 10.1285/i1825229Xv2n2p63 Search in Google Scholar

[2] Chen, J.C. & Chia P.G. (1996). Oxygen Uptake and Nitrogen Excretion of Juvenile Scylla serrata at Different Temperature and Salinity Levels. J. Crust. Biol. 16(3): 437–442. DOI: 10.1163/193724096X00441 http://dx.doi.org/10.2307/154873210.1163/193724096X00441 Search in Google Scholar

[3] Chen, J.C. & Kou T. (1996). Effects of temperature on oxygen consumption and nitrogenous excretion of juvenile Macrobrachium rosenbergii. Aquaculture. 145(1–4): 295–303. DOI: 10.1016/S0044-8486(96)01348-8 http://dx.doi.org/10.1016/S0044-8486(96)01348-810.1016/S0044-8486(96)01348-8 Search in Google Scholar

[4] Choy, S.C. (1986). Natural diet and feeding habits of the crabs Liocarcinus puber and L. holsatus (Decapoda, Brachyura, Portunidae). Mar. Ecol. Prog. Ser. 31: 87–99 http://dx.doi.org/10.3354/meps03108710.3354/meps031087 Search in Google Scholar

[5] Christiansen, M.E. & Costlow J.D.Jr. (1975). The effect of salinity and cyclic temperature on larval develop of the mud crab Rhithropanopeus harrisii (Brachyura: Xantidae) reared in the laboratory. Mar. Biol. 32: 215–221. DOI: 10.1007/BF00399201 http://dx.doi.org/10.1007/BF0039920110.1007/BF00399201 Search in Google Scholar

[6] Conover, R.J. (1966). Assimilation of organic matter by zooplankton. Limnol. Oceanog. 11: 338–290. DOI: 10.4319/lo.1966.11.3.0338 http://dx.doi.org/10.4319/lo.1966.11.3.033810.4319/lo.1966.11.3.0338 Search in Google Scholar

[7] Corte Rosaria, J. & Martin E.R. (2010). Behavioral Changes in Freshwater Crab Barytelphusa cunicularis after Exposure to Low Frequency Electromagnetic Fields. World J. Fish. Mar. Sci. 2(6): 487–494 Search in Google Scholar

[8] Crear, B.J. & Forteath G.N.R. (2002). Feeding has the largest effect on the ammonia excretion rate of the southern rock lobster, Jasus edwardsii, and the western rock lobster, Panulirus cygus. Aquac. Eng. 26: 239–250. DOI:10.1016/S0144-8609(02)00033-X http://dx.doi.org/10.1016/S0144-8609(02)00033-X10.1016/S0144-8609(02)00033-X Search in Google Scholar

[9] Czerniejewski, P. & Rybczyk A. (2008). Body weight, morphometry, and diet of the mud crab Rhithropanopeus harrisii tridentatus (Maitland, 1874) in the Odra Estuary, Poland. Crustaceana. 81(11): 1289–1299. DOI: 10.1163/156854008X369483 http://dx.doi.org/10.1163/156854008X36948310.1163/156854008X369483 Search in Google Scholar

[10] Diamond, D.W., Scott L.K., Forward R.B.Jr. & Kirby-Smith W. (1989). Respiration and osmoregulation of the estuarine crab Rhithropanopeus harrisii (Gould): effect of the herbicide, alachlor. Comp. Biochem. Physiol. 93A: 313–318. DOI: 0.1016/0300-9629(89)90043-1 http://dx.doi.org/10.1016/0300-9629(89)90043-110.1016/0300-9629(89)90043-1 Search in Google Scholar

[11] Elliott, J.M. & Davison W. (1975). Energy equivalents of oxygen consumption in animal energetic. Oecologia. 19:195–201 http://dx.doi.org/10.1007/BF0034530510.1007/BF0034530528309234 Search in Google Scholar

[12] Forward, R.B.Jr. (2009). Larval Biology of the Crab Rhithropanopeus harrisii (Gould): A Synthesis. Biol. Bull. 216(3): 243–256 10.1086/BBLv216n3p243 Search in Google Scholar

[13] Fowler, A.E., Forsström T., von Numers M. & Vesakoski O. (2013). The North American mud crab Rhithropanopeus harrisii (Gould, 1841) in newly colonized Northern Baltic Sea: distribution and ecology. Aquat. Inv. 8(1): 89–96. DOI: 0.3391/ai.2013.8.1.10. http://dx.doi.org/10.3391/ai.2013.8.1.1010.3391/ai.2013.8.1.10 Search in Google Scholar

[14] Gnaiger, E. & Bitterlich G. (1984). Proximate biochemical composition and caloric content calculate from elemental CHN analysis: a stoichiometric concept. Oecologia. 62: 289–298. http://dx.doi.org/10.1007/BF0038425910.1007/BF0038425928310880 Search in Google Scholar

[15] Gonçalves, F., Ribeiro R. & Soares M.V.M. (1995). Rhithropanopeus harrisii (Gould), an American crab in the Estuary of the Mondego River. J. Crust. Biol. 15(4): 756–762. DOI: 10.2307/1548824. http://dx.doi.org/10.2307/154882410.2307/1548824 Search in Google Scholar

[16] Guerin, J.L. & Stickle W.B. (1992). Effects of salinity gradients on the tolerance and bioenergetics of juvenile blue crabs (Callinectes sapidus) from waters of different environmental salinities. Mar. Biol. 114(3): 391–396. DOI: 10.1007/BF00350029 http://dx.doi.org/10.1007/BF0035002910.1007/BF00350029 Search in Google Scholar

[17] Hartnoll, R.G. (1982). Growth in the Biology of Crustacea. In D.E. Bliss (Eds.), Embryology, Morphology and Genetics 2 (pp 116–196). Academic Press. Search in Google Scholar

[18] Hegele-Drywa, J. & Normant M. (2014). Non-native crab Rhithropanopeus harrisii (Gould, 1984) — a new component of the benthic communities in the Gulf of Gdańsk (southern Baltic Sea). Oceanologia. 56(1): 125–139. DOI: 10.5697/oc.56-1.125 http://dx.doi.org/10.5697/oc.56-1.12510.5697/oc.56-1.125 Search in Google Scholar

[19] Hochachka, P.W. (1991). Temperature: the ectothermy option. In P.W. Hochachka & T.P. Mommsen (Eds.), Biochemistry and molecular ecology of fishes (pp 313–322). Amsterdam, Elsevier. 10.1016/B978-0-444-89124-2.50016-6 Search in Google Scholar

[20] Hulathduwa, Y.D., Stickle W.B. & Brown K.M. (2007). The effect of salinity on survival, bioenergetics and predation risk in the mud crabs Panopeus simpsoni and Eurypanopeus depressus. Mar. Biol. 152: 363–370. http://dx.doi.org/10.1007/s00227-007-0687-z10.1007/s00227-007-0687-z Search in Google Scholar

[21] Hutchison, V.H. & Dupré R.K. (1992). Thermoreulation. In M.E. Feder & W.W. Burggren (Eds.), Environmental physiology of the amphipods (pp 206–249). University of Chicago Press. Search in Google Scholar

[22] Iseda, M., Otani M. & Kimura T. (2007). First record of an introduced crab Rhithropanopeus harrisii (Crusteacea: Brachyura: Panopeidae) in Japan. JPN. J. Benthol. 62: 39–44. 10.5179/benthos.62.39 Search in Google Scholar

[23] Jakubowska M. & Normant M. (2011). Effect of temperature on the physiology and bioenergetics of adults of the Chinese mitten crab Eriocheir sinensis: considerations for a species invading cooler waters. Mar. Freshwater. Behav. Physiol. 44(3): 171–183. DOI:10.1080/10236244.2011.598283 http://dx.doi.org/10.1080/10236244.2011.59828310.1080/10236244.2011.598283 Search in Google Scholar

[24] Kinne, O. & Rotthauwe H.W. (1952). Biologische Beobachtungen und Untersuchungen über die Blutkonzentration an Heteropanope tridentatus Maitland (Decapoda). Kieler Meeresforsch. 8: 212–217 (in German). Search in Google Scholar

[25] Klekowski, R.Z. & Fischer Z. (1993). Bioenergetyka ekologiczna zwierząt zmiennocieplnych. Warszawa, PAN (in Polish). Search in Google Scholar

[26] Klekowski, R.Z. & Opaliński K.W. (1993). Metabolizm energetyczny. In R.Z. Klekowski & Z. Fisher (Eds.), Bioenergetyka ekologiczna zwierząt zmiennocieplnych (pp 35–82). Polska Akademia Nauk, WydziaŁ II Nauk Biologicznych. Search in Google Scholar

[27] Kondzela, C.M. & Shirley T.C. (1993). Survival, feeding, and growth of juvenile Dungeness crabs from southeastern Alaska reared at different temperatures. J. Crust. Biol. 13: 25–35 http://dx.doi.org/10.2307/154912010.2307/1549120 Search in Google Scholar

[28] Koroleff, F. (1976). Determination of nutrients. In K. Grasshoff, K. Kremling & M. Ehrhardt (Eds.), Methods of seawater analysis (pp 159–229). New York, Weinheim. Search in Google Scholar

[29] Kotta, J. & Ojaveer H. (2012). Rapid establishment of the alien crab Rhithropanopeus harrisii (Gould) in the Gulf of Riga. Est. J. Ecol. 61(4): 293–298. DOI: 10.3176/eco.2012.4.04 http://dx.doi.org/10.3176/eco.2012.4.0410.3176/eco.2012.4.04 Search in Google Scholar

[30] Kujawa, S. (1957). Biology and culture of the crab Rhithropanopeus harrisii (Gould) subsp. tridentatus (Maitland) from Vistula Lagoon. Wszechświat. 2: 57–59 Search in Google Scholar

[31] Lee, S.Y. (1997). Potential trophic importance of the faecal material of the mangrove sesarmine crab Sesarma messa. Mar. Ecol. Prog. Ser. 159: 275–284 http://dx.doi.org/10.3354/meps15927510.3354/meps159275 Search in Google Scholar

[32] Lucas, A. (1993). Bioénergétique Des Animaux Aquatiques. Paris, Masson (in French). Search in Google Scholar

[33] Maltby, L., Naylor C. & Calow P. (1990). Effect of stress on a freshwater benthic detritivore: Scope for growth in. Ecotox. Environ. Safety. 9(3): 285–291. DOI: 10.1016/0147-6513(90)90030-9 http://dx.doi.org/10.1016/0147-6513(90)90030-910.1016/0147-6513(90)90030-9 Search in Google Scholar

[34] McCue, M.D. (2006). Specific dynamic action: A century of investigation. Comp. Biochem. Physiol. 144 A: 381–394. DOI: 10.1016/j.cbpa.2006.03.011 http://dx.doi.org/10.1016/j.cbpa.2006.03.01110.1016/j.cbpa.2006.03.011 Search in Google Scholar

[35] Normant, M., Chrobak M. & Szaniawska A. (2002). Energy value and chemical composition (CHN) of the Chinese mitten crab Eriocheir sinensis (Decapoda: Grapsidae) from the Baltic Sea. Therm. Acta. 394: 233–237. DOI: 10.1016/S0040-6031(02)00259-9 http://dx.doi.org/10.1016/S0040-6031(02)00259-910.1016/S0040-6031(02)00259-9 Search in Google Scholar

[36] Normant, M. & Gibowicz M. (2008). Salinity induced changes in haemolymph osmolality and total metabolic rate of the mud crab Rhithropanopeus harrisii Gould, 1841 from Baltic coastal waters. J. Exp. Mar. Biol. Ecol. 355(2): 145–152. DOI: 10.1016/j.jembe.2007.12.014 http://dx.doi.org/10.1016/j.jembe.2007.12.01410.1016/j.jembe.2007.12.014 Search in Google Scholar

[37] Normant, M., Dziekoński M., Drzazgowski J. & Lamprecht I. (2007). Metabolic investigations of aquatic organisms with a new twin heat conduction calorimeter. Therm. Acta. 458(1–2): 101–106. DOI: 10.1016/j.tca.2007.01.025 http://dx.doi.org/10.1016/j.tca.2007.01.02510.1016/j.tca.2007.01.025 Search in Google Scholar

[38] Normant, M., Król M. & Jakubowska M. (2012). Effect of salinity on the physiology and bioenergetics of adult Chinese mitten crabs Eriocheir sinensis. J. Exp. Mar. Biol. Ecol. (416–417): 215–220. DOI:10.1016/j.jembe.2012.01.001 10.1016/j.jembe.2012.01.001 Search in Google Scholar

[39] Normant, M. & Lamprecht I. (2006). Does scope for growth change as a result of salinity stress in the amphipod Gammarus oceanicus? J. Exp. Mar. Biol. Ecol. 334(1): 158–163. DOI: 10.1016/j.jembe.2006.01.022 http://dx.doi.org/10.1016/j.jembe.2006.01.02210.1016/j.jembe.2006.01.022 Search in Google Scholar

[40] Ojaveer, H., Galil B.S., Minchin D., Olenin S., Amorim A. et al. (2014). Ten recommendations for advancing the assessment and management of non-indigenous species in marine ecosystems. Mar. Pol. (44):160–165. DOI: 10.1016/j.marpol.2013.08.019. 10.1016/j.marpol.2013.08.019 Search in Google Scholar

[41] Paul, J.M., Paul A.J. & Kimker A. (1994). Compensatory feeding capacity of 2 Brachyuran crabs, Tanner and Dungeness, after starvation periods like those encountered in pots. Alaska Fish. Res. Bul. 1(2): 184–187 Search in Google Scholar

[42] Peng, S., Chen C., Shi Z. & Wang L. (2013). Amino Acid and Fatty Acid Composition of the Muscle Tissue of Yellowfin Tuna (Thunnus Albacares) and Bigeye Tuna (Thunnus Obesus). Journal of Food and Nutrition Research. 1(4): 42–45. DOI: 10.12691/jfnr-1-4-2 Search in Google Scholar

[43] Pigliucci, M. & Preston K. 2004. The Evolutionary Biology of Complex Phenotypes. Oxford, Oxford University Press. Search in Google Scholar

[44] Pirestani, S., Ali Sahari M., Barzegar M. & Seyfabadi S.J. (2009). Chemical compositions and minerals of some commercially important fish species from the South Caspian Sea. International Food Research Journal. 16: 39–44. 10.1111/j.1745-4514.2010.00343.x Search in Google Scholar

[45] Radford, C.A., Marsden I.M. & Davison W. (2004). Temporal variation in the specific dynamic action of juvenile New Zealand rock lobsters, Jasus edwardsii. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 139A: 1–9. DOI:10.1016/j.cbpb.2004.02.015 http://dx.doi.org/10.1016/j.cbpb.2004.02.01510.1016/j.cbpb.2004.02.01515471675 Search in Google Scholar

[46] Regnault, M. (1987). Nitrogen excretion in marine and fresh-water crustacean. Biol. Rev. 62(1): 1–24. DOI: 10.1111/j.1469-185X.1987.tb00623.x http://dx.doi.org/10.1111/j.1469-185X.1987.tb00623.x10.1111/j.1469-185X.1987.tb00623.x Search in Google Scholar

[47] Robertson, R.F., El-Haj A.J., Clarke A. & Taylor E.W. (2001). Effects of temperature on specific dynamic action and protein synthesis rates in the Baltic isopod crustacean, Saduria entomon. J. Exp. Mar. Biol. Ecol. 262(1): 113–129. DOI: 10.1016/S0022-0981(01)00286-6 http://dx.doi.org/10.1016/S0022-0981(01)00286-610.1016/S0022-0981(01)00286-6 Search in Google Scholar

[48] Roche, D.G. & Torchin M.E. (2007). Established population of the North American Harris mud crab, Rhithropanopeus harrisii (Gould 1841) (Crustacea: Brachyura: Xanthidae) in the Panama Canal. Aquat. Inv. 2(3): 155–161. DOI:10.3391/ai.2007.2.3.1 http://dx.doi.org/10.3391/ai.2007.2.3.110.3391/ai.2007.2.3.1 Search in Google Scholar

[49] Romero, M.C., Vanella F., Tapella F. & Lovrich G.A. (2006). Assimilation and oxygen uptake associated with two different feeding habits of Munida gregaria (=M. subrugosa) (Crustacea, Decapoda). J. Exp. Mar. Biol. Ecol. 333(1): 40–48. DOI: 10.1016/j.jembe.2005.11.018 http://dx.doi.org/10.1016/j.jembe.2005.11.01810.1016/j.jembe.2005.11.018 Search in Google Scholar

[50] Rosas, C., Cuzon G., Pascual C., Gaxiola G. et al. (2007). Energy balance of Octopus maya fed crab or artificial diet. Mar. Biol. 152: 371–381. DOI: 10.1007/s00227-007-0692-2 http://dx.doi.org/10.1007/s00227-007-0692-210.1007/s00227-007-0692-2 Search in Google Scholar

[51] Rychter, A. (1997). Effect of anoxia on the behaviour, haemolymph lactate and glycogen concentrations in the mud crab Rhithropanopeus harrisii ssp. tridentatus (Maitland) (Crustacea: Decapoda). Oceanologia. 39(3): 325–335 Search in Google Scholar

[52] Sãnchez, A., Pascual C., Sãnchez A., Vargas-Albores F. et al. (2002). Acclimation of Adult Males of Litopenaeus Setiferus Exposed at 27 °C and 31 °C: Bioenergetic Balance. In: E E. Esobar-Briones & F. Alvarez (Eds.), Modern approaches to the study of Crustacea (pp 45–52). New York, Kluwer Academic/Plenum Publishers http://dx.doi.org/10.1007/978-1-4615-0761-1_710.1007/978-1-4615-0761-1_7 Search in Google Scholar

[53] Schmidt-Nielsen, K. (1997). Fizjologia zwierząt: Adaptacja do środowiska. Warszawa, PWN. Search in Google Scholar

[54] Schlichting, C.D. & Pigliucci M. (1998). Phenotypic Evolution: A Reaction Norm Perspective. Sunderland, MA: Sinauer Associates. Search in Google Scholar

[55] Schröer, M., Wittmann A.C., Grüner N., Steeger H.U., Bock C., Paul R. & Pörtner H.O. (2009). Oxygen limited thermal tolerance and performance in the lugworm Arenicola marina: a latitudinal comparison. J. Exp. Mar. Biol. Ecol. 372, 22–30. http://dx.doi.org/10.1016/j.jembe.2009.02.00110.1016/j.jembe.2009.02.001 Search in Google Scholar

[56] Sébert, P., Pequeux A., Simon B. & Barthelemy L. (1995). Effects of hydrostatic pressure and temperature on the energy metabolism of the Chinese crab (Eriocheir sinensis) and the yellow eel (Anguilla Anguilla). Comp. Biochem. Physiol. 112(1): 131–136. DOI: 10.1016/0300-9629(95)00079-M http://dx.doi.org/10.1016/0300-9629(95)00079-M10.1016/0300-9629(95)00079-M Search in Google Scholar

[57] Smith, R.I. (1967). Osmotic regulation and adaptive reduction of water permeability in a brackish-water crab, Rhithropanopeus harrisii (Brachyura: Xanthidae). Biological Bulletin. 133: 643–658 http://dx.doi.org/10.2307/153992510.2307/1539925 Search in Google Scholar

[58] Turoboyski, K. (1973). Biology and ecology of the crab Rhithropanopeus harrisii ssp. tridentatus. Mar. Biol. 23(4): 303–313. DOI: 10.1007/BF00389338 http://dx.doi.org/10.1007/BF0038933810.1007/BF00389338 Search in Google Scholar

[59] Vega-Villasante, F., Nolasco H. & Civera R. (1993). The digestive enzymes of the pacific brown shrimp Penaeus californiensis.: I-Properties of amylase activity in the digestive tract. Comp. Biochem. Phisiol. Part B: Comparative Biochemistry. 106(3): 547–550. http://dx.doi.org/10.1016/0305-0491(93)90130-W10.1016/0305-0491(93)90130-W Search in Google Scholar

[60] Wallace, J.C. (1973). Feeding, starvation and metabolic rate in the Shore crab Carcinus maenas. Mar. Biol. 20: 277–281. DOI: 10.1007/BF00354271 http://dx.doi.org/10.1007/BF0035427110.1007/BF00354271 Search in Google Scholar

[61] Weihrauch, D., Wilkie M.P. & Walsh P.J. (2009). Ammonia and urea transporters in gills of fish and aquatic crustaceans. J. Exp. Biol. 212: 1716–1730. DOI: 10.1242/jeb.036103 http://dx.doi.org/10.1242/jeb.02485110.1242/jeb.036103 Search in Google Scholar

[62] Whiteley, N.M., Roberston R.F., Meagor J., El Haj A. J. & Taylor E.W. (2001). Protein synthesis and specific dynamic action in crustaceans: effects of temperature. Compar. Biochem. Pysiol. Mol. Integr. Physiol. 128(3): 593–604. DOI: 10.1016/S1095-6433(00)00337-8 http://dx.doi.org/10.1016/S1095-6433(00)00337-810.1016/S1095-6433(00)00337-8 Search in Google Scholar

[63] Willmer, P., Stone G. & Johnson J. (2000). Environmental physiology of animals. Metabolism and energy. Oxford, Blackwell Science. Search in Google Scholar

[64] Winberg, G.G. (1960). Rate of metabolism and food requirements of fishes. Transl. Ser. Fish. Res. Bd. Can. 194–202. Search in Google Scholar

[65] Wolff, M. & Cerda G. (1992). Feeding Ecology of the crab Cancer Polyodon in La Herradura Bay, northern Chile. Feeding chronology, food intake, gross growth and ecological efficiency. Mar. Ecol. Prog. Ser. 89: 213–219. DOI: 10.3354/meps089213 http://dx.doi.org/10.3354/meps08921310.3354/meps089213 Search in Google Scholar

[66] Wyban, J., Walsh W.A. & Godin D.M. (1995). Temperature effects on growth, feeding rate and food conversion of the Pacific white shrimp (Penaeus vannamei). Aquaculture. 138: 267–279. DOI: 10.1016/0044-8486(95)00032-1 http://dx.doi.org/10.1016/0044-8486(95)00032-110.1016/0044-8486(95)00032-1 Search in Google Scholar

eISSN:
1897-3191
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Chemistry, other, Geosciences, Life Sciences