Otwarty dostęp

The influence of different recultivation techniques on primary production processes in a degraded urban lake


Zacytuj

[1] Blindow, I., Hargeby, A., Mayercordt, J. & Schubert H. (2006). Primary production in two shallow lakes with contrasting plant form dominance: A paradox of enrichment? Limnology and Oceanography. 51(6): 2711–2721. http://dx.doi.org/10.4319/lo.2006.51.6.271110.4319/lo.2006.51.6.2711 Search in Google Scholar

[2] Brooks, A.S. & Zastrow, J.C. (2002). The potential influence of climate change on offsore primary production in Lake Michigan. Journal of Great Lakes Research. 28(4): 597–607. http://dx.doi.org/10.1016/S0380-1330(02)70608-410.1016/S0380-1330(02)70608-4 Search in Google Scholar

[3] Brzozowska, R. & Gawrońska, H. (2005). Influence of a multi — year artificial aeration of a lake using destratification method on the sediment — water phosphorus exchange. Archive of Environmental Protection. 31(3): 71–88. doi.org/10.1016/SO380. Search in Google Scholar

[4] Cooke, G.D., Welch, E.B., Peterson, S.A. & Newroth, P.R. (2005). Restoration and management of lakes and reservoirs. Taylor & Francis, A CRC Press, Boca Raton, Florida. pp. 591. http://dx.doi.org/10.1201/978142003210910.1201/9781420032109 Search in Google Scholar

[5] Dunalska, J.A. (2011). Impact of morphometric and catchment variables on summer organic carbon richness in deep temperate lakes. Knowledge and Management of Aquatic Ecosystems. 403(03): 1–11. doi:10.1051/kmae/2011043. 10.1051/kmae/2011043 Search in Google Scholar

[6] Dunalska, J.A., Górniak, D., Jaworska, B., Evelyn, E. & Gaiser E.E. (2012). Effect of temperature on organic matter transformation in a different ambient nutrient availability. Ecological Engineering. 49: 27–34. doi.org/10.1016/jecoleng.2012.08.023. http://dx.doi.org/10.1016/j.ecoleng.2012.08.02310.1016/j.ecoleng.2012.08.023 Search in Google Scholar

[7] Dunst, R.C., Born, S.M., Uttomark, P.D., Smith, S.A., Nichols, S.A., Peterson, J.O., Knauer, R., Serns, S.L., Winter, D.R., & Wirth, T.L. (1974). Survey of lake rehabilitation techniques and experiences. Departament of Natural Resources, Madison Tech. Bull. 75: 1–177. Search in Google Scholar

[8] Finger, D., Wüest, A. & Bossard, P. (2013). Effects of oligotrophication on primary production in peri-alpine lakes. Water Resources Research. 49(8): 4700–4710. doi:10.1002/wrcr.20355. http://dx.doi.org/10.1002/wrcr.2035510.1002/wrcr.20355 Search in Google Scholar

[9] Gawrońska, H. (1984). Wpływ ograniczenia dopływu ścieków na warunki fizyczno — chemiczne wód Jeziora Długiego w Olsztynie. Rocz. Nauk Rol. 100(4): 27–52. Search in Google Scholar

[10] Gawrońska, H., Lossow, K. & Grochowska, J. (2005). Rekultywacja Jeziora Długiego w Olsztynie. Wyd. Edycja pp. 52. Search in Google Scholar

[11] Grochowska, J. & Brzozowska, R. (2013). The influence of different recultivation methods on the water buffer capacity in degraded urban lake. Knowledge and Management of Aquatic Ecosystems. 410(01): 2–13.dx.doi.org/10.1051/kmae/2013056. 10.1051/kmae/2013056 Search in Google Scholar

[12] Grochowska, J., Brzozowska, R. & Łopata, M. (2013). Durability of changes in phosphorus compounds in water of an urban lake after application of two reclamation methods. Water Science and Technology. 68(1): 234–239.doi:10.2166/wst.2013.249. http://dx.doi.org/10.2166/wst.2013.24910.2166/wst.2013.24923823560 Search in Google Scholar

[13] Grochowska, J. & Gawrońska, H. (2004). Restoration effectiveness of a degraded lake using multi — year artificial aeration. Polish Journal of Environmental Studies. 13(6): 671–681. Search in Google Scholar

[14] Helmroos, H., Hietanen, S., Niemistö, J. & Horpilla, J. (2012). Sediment resuspension and denitrification affect the nitrogen to phosphorus ratio of shallow lake waters. Fundamental and Applied Limnology. 180(3): 193–205. doi:10.1127/1863-9135/2012/2013. http://dx.doi.org/10.1127/1863-9135/2012/022310.1127/1863-9135/2012/0223 Search in Google Scholar

[15] Hermanowicz, W., Dożańska, W., Dojlido, J., Koziorowski, B. & Zerbe, J. (1999). Fizyczno — chemiczne badanie wody i ścieków. Wyd. Arkady. pp 530. Search in Google Scholar

[16] Imboden, D.M. (1992). Possibilities and limitations of lake restoration: Conclusions for Lake Lugano. Aquatic Sciences. 54(3/4): 382–390. 10.1007/BF00878149 Search in Google Scholar

[17] Karlsson, J., Byström, P., Ask, J., Persson, L. & Jansson, M. (2009). Light limitation of nutrient poor lake ecosystems. Nature. 460: 506–509. doi:10.1038/nature08179. http://dx.doi.org/10.1038/nature0817910.1038/nature0817919626113 Search in Google Scholar

[18] Klapper, H. (1991). Control of eutrophication in inland waters. Ellis Horwood, New York. pp. 337. Search in Google Scholar

[19] Klapper, H. (2003). Technologies for lake restoration. Journal of Limnology. 62(1):73–90. 10.4081/jlimnol.2003.s1.73 Search in Google Scholar

[20] Lewis, W.M. (2011) Global primary production of lakes: 19 th Baldi Memorial Lecture. Inland Waters. 1: 1–28. http://dx.doi.org/10.5268/IW-1.1.38410.5268/IW-1.1.384 Search in Google Scholar

[21] Mucha, A. & Rybak, M. (1979). Zawartość chlorofilu w fitoplanktonie Jeziora Długiego. Zesz. Nauk. ART. 9: 47–53. Search in Google Scholar

[22] Nara, F., Tani, Y., Soma, Y., Soma, M., Naraoka, H., Watanabe, T., Horiuchi, K., Kawai, T., Oda, T. & Nakamura, T. (2005). Response of phytoplankton productivity to climate change recorded by sedimentary photosynthetic pigments in Lake Hovsgol (Mongolia) for the last 23,000 years. Quaternary International. 136: 71–81. doi:10.1016/j.quaint.2004.11.009. http://dx.doi.org/10.1016/j.quaint.2004.11.00910.1016/j.quaint.2004.11.009 Search in Google Scholar

[23] OkSun, K., Imhoff, J.F., Witzel, K. & Junier, P. (2011). Distribution of denitrifying bacterial communities in the stratified water column and sediment — water interface in two freshwater lakes and the Baltic Sea. Aquatic Ecology. 45: 99–112. doi:10.1007/s10452-010-9335-7. http://dx.doi.org/10.1007/s10452-010-9335-710.1007/s10452-010-9335-7 Search in Google Scholar

[24] Peterson, B.J. (1980). Aquatic primary productivity and the 14C-CO2 method: A history of the productivity problem. Annual Review of Ecology and Systematics. 11, 1359–1385. http://dx.doi.org/10.1146/annurev.es.11.110180.00204310.1146/annurev.es.11.110180.002043 Search in Google Scholar

[25] Robarts, R.D. (1983). Factors controlling primary production in a hypertrophic lake (Hartbeespoort Dam, South Africa). Journal of Plankton Research. 6(1): 91–105. http://dx.doi.org/10.1093/plankt/6.1.9110.1093/plankt/6.1.91 Search in Google Scholar

[26] Rodziewicz, H. & Rybak, M. (1979). Plankton roślinny Jeziora Długiego. Zesz. Nauk. ART. 9: 55–62. Search in Google Scholar

[27] Romero-Viana, L., Keely, B.J., Camacho, A. & Vicente, E. (2010). Primary production in Lake La Cruz (Spain) over the last four centuries: reconstruction based on sedimentary signal of photosynthetic pigments. Journal of Paleolimnology. 43: 771–786. doi:10.1007/s10933-009-9367-y. http://dx.doi.org/10.1007/s10933-009-9367-y10.1007/s10933-009-9367-y Search in Google Scholar

[28] Standard methods for examination water and wastewater (1980). American Public Health Association. AWWA, WPCF, Washington DC. Search in Google Scholar

[29] StatSoft Inc. (2010). STATISTICA (data analysis software system), version 9.1. www.statsoft.com. Search in Google Scholar

[30] Tammeorg, O., Möls, T. & Kangur, K. (2014). Weather conditions influencing phosphorus concentration in the growing period in the large shallow lake Peipsi (Estonia/Russia). Journal of Limnology. 73(1): 11–19. doi.org/10.4081/jlimnol.2014.768. http://dx.doi.org/10.4081/jlimnol.2014.76810.4081/jlimnol.2014.768 Search in Google Scholar

[31] Vadeboncoeur, Y., Lodge, D.M. & Carpenter, S.R. (2001). Whole — lake fertilization effects on distribution of primary production between benthic and pelagic habitats. Ecology. 82(4): 1065–1077. http://dx.doi.org/10.1890/0012-9658(2001)082[1065:WLFEOD]2.0.CO;210.1890/0012-9658(2001)082[1065:WLFEOD]2.0.CO;2 Search in Google Scholar

eISSN:
1897-3191
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Chemistry, other, Geosciences, Life Sciences