Zacytuj

[1] Alonzo, F., Mayzaud, P. & Razouls, S. (2001). Egg production and energy storage in relation to feeding conditions in the subantarctic calanoid copepod Drepanopus pectinatus: an experimental study of reproduction strategy. Mar. Ecol. Prog. Ser. 209, 231–242. http://dx.doi.org/10.3354/meps20923110.3354/meps209231 Search in Google Scholar

[2] Ambler, J. W. (1985). Seasonal factors affecting egg production and viability of eggs of Acartia tonsa Dana from East Lagoon, Galveston, Texas. Estuar. Coast. Shelf Sci. 20, 743–760. http://dx.doi.org/10.1016/0272-7714(85)90030-710.1016/0272-7714(85)90030-7 Search in Google Scholar

[3] Antajan, E. (2004). Responses of calanoid copepods to changes in phytoplankton dominance in the diatom — Phaeocystis globosa dominated Belgium coastal waters. Published doctoral dissertation, University of Brussel, Belgium. Search in Google Scholar

[4] Arendt, K. E., Jónasdóttir, S. H., Hansen, P. J. & Gärtner, S. (2005). Effects of dietary fatty acids on the reproductive success of the calanoid copepod Temora longicornis. Mar. Biol. 146, 513–530. http://dx.doi.org/10.1007/s00227-004-1457-910.1007/s00227-004-1457-9 Search in Google Scholar

[5] Bakker, C. & Van Rijswijk, P. (1987). Development time and growth rate of the marine calanoid copepod Temora longicornis as related to food conditions in the Oosterschelde estuary (southern North Sea). Nether. J. Sea Res. 21(2), 125–145. http://dx.doi.org/10.1016/0077-7579(87)90028-710.1016/0077-7579(87)90028-7 Search in Google Scholar

[6] Bautista, B., Harris, P. R. & Rodriguez, V. (1994). Temporal variability in copepod fecundity during two different spring bloom periods in coastal waters off Plymouth (SW England). J. Plankton Res. 16(10), 1367–1377. http://dx.doi.org/10.1093/plankt/16.10.136710.1093/plankt/16.10.1367 Search in Google Scholar

[7] Beckman, B. R. & Peterson, T. W. (1986). Egg production by Acartia tonsa in Long Island Sound. J. Plankton Res. 8, 917–925. http://dx.doi.org/10.1093/plankt/8.5.91710.1093/plankt/8.5.917 Search in Google Scholar

[8] Berggreen, U., Hansen, B. & Kiørboe, T. (1988). Food size spectra, ingestion and growth of the copepod Acartia tonsa during development: implications for determination of copepod production. Mar. Biol. 99, 341–352. http://dx.doi.org/10.1007/BF0211212610.1007/BF02112126 Search in Google Scholar

[9] Burdloff, D., Gasparini, S., Villate, F., Uriarte, I., Cotano, U., Sautour, B. & Etcheber, H. (2002). Egg production of the copepod Acartia bifilosa in two contrasting European estuaries in relation to seston composition. J. Exp. Mar. Biol. Ecol. 274, 1–17. http://dx.doi.org/10.1016/S0022-0981(02)00133-810.1016/S0022-0981(02)00133-8 Search in Google Scholar

[10] Carotenuto, Y., Ianora, A., Buttino, I., Romano, G. & Miralto, A. (2002). Is postembryonic development in the copepod Temora stylifera negatively affected by diatom diets? J. Exp.Mar.Biol. Ecol. 276, 49–66. http://dx.doi.org/10.1016/S0022-0981(02)00237-X10.1016/S0022-0981(02)00237-X Search in Google Scholar

[11] Castellani, C. & Lucas, I. A. N. (2003). Seasonal variation in egg morphology and hatching success in the calanoid copepods Temora longicornis, Acartia clausi and Centropages hamatus. J. Plankton Res. 25(5), 527–537. http://dx.doi.org/10.1093/plankt/25.5.52710.1093/plankt/25.5.527 Search in Google Scholar

[12] Checkley, D. M. Jr. (1980). The egg production of a marine planktonic copepod in relation to its food supply: laboratory studies. Limnol. Oceanogr. 25(3), 430–446. http://dx.doi.org/10.4319/lo.1980.25.3.043010.4319/lo.1980.25.3.0430 Search in Google Scholar

[13] Corkett, C. J. & Zillioux, J. (1975). Studies on the effect of temperature on the egg laying of three species of calanoid copepods in the laboratory. Bull.Plankton Soc. Jpn. 21, 13–21. Search in Google Scholar

[14] Cotonnec, G., Brunet, C., Sautour, N. & Thoumelin, G. (2001). Nutritive value and selection of food particles by copepods during a spring bloom of Phaeocystis sp. in the English Channel, as determined by pigment and fatty acid analyses. J. Plankton Res. 23, 693–703. http://dx.doi.org/10.1093/plankt/23.7.69310.1093/plankt/23.7.693 Search in Google Scholar

[15] Dagg, M. (1978). Estimated, in situ, rates of egg production for the copepod Centropages typicus (Kroyer) in the New York Bight ? J. Exp. Mar. Biol. Ecol. 34, 183–196. http://dx.doi.org/10.1016/S0022-0981(78)80001-X10.1016/S0022-0981(78)80001-X Search in Google Scholar

[16] Dam, H. G. & Peterson, W. T. (1991). In situ feeding behaviour of the copepod Temora longicornis: effects of seasonal changes in chlorophyll size fraction and female size. Mar. Ecol. Prog. Ser. 71, 113–123. http://dx.doi.org/10.3354/meps07111310.3354/meps071113 Search in Google Scholar

[17] Devreker, D., Souissi, S. & Seuront, L. (2005). Effects of chlorophyll concentration and temperature variation on the reproduction and survival of Temora longicornis (Copepoda, Calanoida) in the Eastern English Channel? J. Exp. Mar. Biol. Ecol. 318, 145–162. http://dx.doi.org/10.1016/j.jembe.2004.12.01110.1016/j.jembe.2004.12.011 Search in Google Scholar

[18] Dzierzbicka-Glowacka, L. (2004a). Growth and development of copepodite stages of Pseudocalanus spp.. J. Plankton Res. 26, 49–60. http://dx.doi.org/10.1093/plankt/fbh00210.1093/plankt/fbh002 Search in Google Scholar

[19] Dzierzbicka-Glowacka, L. (2004b). The dependence of body weight in copepodite stages of Pseudocalanus spp. on variations of ambient temperature and food concentration. Oceanologia 46, 45–63. Search in Google Scholar

[20] Dzierzbicka-Glowacka, L. (2005a). A numerical investigation of phytoplankton and Pseudocalanus elongatus dynamics in the spring bloom time in the Gdańsk Gulf. J. Mar. Sys. 53, 19–36. http://dx.doi.org/10.1016/j.jmarsys.2004.05.00110.1016/j.jmarsys.2004.05.001 Search in Google Scholar

[21] Dzierzbicka-Glowacka, L. (2005b). Modelling the seasonal dynamics of marine plankton in southern Baltic Sea. Part 1. A Coupled Ecosystem Model. Oceanologia 47, 591–619. Search in Google Scholar

[22] Dzierzbicka-Glowacka, L. (2005c). Equivalence of rates of growth and egg production of Pseudocalanus. Oceanol. Hydrobiol. Stud. 34(4), 19–32. Search in Google Scholar

[23] Dzierzbicka-Glowacka, L., Bielecka, L. & Mudrak, S. (2006a). Seasonal dynamics of Pseudocalanus minutus elongatus and Acartia spp. in the southern Baltic Sea (Gdańsk Deep) — numerical simulations. Biogeosciences 3, 635–650. http://dx.doi.org/10.5194/bg-3-635-200610.5194/bg-3-635-2006 Search in Google Scholar

[24] Dzierzbicka-Glowacka, L. (2006b). Modelling the seasonal dynamics of marine plankton in the southern Baltic Sea. Part 2. Numerical simulations. Oceanologia 48(1), 41–71. Search in Google Scholar

[25] Dzierzbicka-Glowacka, L., Lemieszek, A. & Żmijewska, M. I. (2009a). Parameterization of a population model for Acartia spp. in the southern Baltic Sea. Part 1: Development time. Oceanologia 51(2), 165–184. http://dx.doi.org/10.5697/oc.51-2.16510.5697/oc.51-2.165 Search in Google Scholar

[26] Dzierzbicka-Glowacka, L., Lemieszek, A. & Żmijewska, M. I. (2009b). Parameterisation of a population model for Acartia spp. in the southern Baltic Sea. Part 2. Egg production. Oceanologia 51(2), 185–201. http://dx.doi.org/10.5697/oc.51-2.18510.5697/oc.51-2.185 Search in Google Scholar

[27] Dzierzbicka-Glowacka, L., Żmijewska, M. I., Mudrak, S., Jakacki, J. & Lemieszek, A. (2010). Population modelling of Acartia spp. in a water column ecosystem model for the South-Eastern Baltic Sea. Biogeosciences 7, 2247–2259. http://dx.doi.org/10.5194/bg-7-2247-201010.5194/bg-7-2247-2010 Search in Google Scholar

[28] Dzierzbicka-Glowacka, L., Lemieszek, A. & Żmijewska, M. I. (2011a). Development and growth of Temora longicornis: numerical simulations using laboratory culture data. Oceanologia 53(1), 137–161. http://dx.doi.org/10.5697/oc.53-1.13710.5697/oc.53-1.137 Search in Google Scholar

[29] Dzierzbicka-Glowacka, L., Jakacki, J., Janecki, M. & Nowicki, A. (2011b). Variability in the distribution of phytoplankton as affected by changes to the main physical parameters in the Baltic Sea. Oceanologia, 53(1-TI), 449–470. http://dx.doi.org/10.5697/oc.53-1-TI.44910.5697/oc.53-1-TI.449 Search in Google Scholar

[30] Dzierzbicka-Glowacka, L., Piskozub, J., Jakucki, J., Mudrak, S. & Żmijewska, M. (2012a). Spatiotemporal distribution of copepod populations in the Gulf of Gdańsk (southern Baltic Sea). J. Oceanogr. 67(1), (DOI: 10.1007/s10872-012-0142-8). Search in Google Scholar

[31] Dzierzbicka-Glowacka, L., Kalarus, M., Janecki, M., Musialik, M., Mudrak, S. & Żmijewska M. (2012b). Population dynamics of Pseudocalanus minutus elongatus in the Gulf of Gdańsk (southern Baltic Sea) — experimental and numerical results. J. Nat. Hist. (DOI:10.1080/00222933.2012.722698). Search in Google Scholar

[32] Dzierzbicka-Głowacka, L., Jakacki, J., Nowicki A., Janecki, M. (2013). Activation of the operational ecohydrodynamic model (3D CEMBS) — the hydrodynamic part. Oceanologia, 55(3), 519–541 (DOI:10.5697/oc.55-3.519 ). 10.5697/oc.55-3.519 Search in Google Scholar

[33] Dzierzbicka-Głowacka, L., Jakacki, J., Nowicki A., Janecki, M. (2013). Activation of the operational ecohydrodynamic model (3D CEMBS) — the ecosystem module. Oceanologia, 55(3), 543–572 (DOI:10.5697/oc.55-3.543). Search in Google Scholar

[34] Evjemo, J. O., Tokle, N., Vadstein, O. & Olsen, Y. (2008). Effect of essential dietary fatty acids on egg production and hatching success of the marine copepod Temora longicornis. J. Exp.. Mar. Biol. Ecol. 365, 31–37. http://dx.doi.org/10.1016/j.jembe.2008.07.03210.1016/j.jembe.2008.07.032 Search in Google Scholar

[35] Fockedey, N. & Mees, J. (1999). Feeding of the hyperbenthic mysid Neomysis integer in the maximum turbidity zone of the Elbe, Westerschelde and Gironde estuaries. J. Mar. Sys. 22, 207–228. http://dx.doi.org/10.1016/S0924-7963(99)00042-110.1016/S0924-7963(99)00042-1 Search in Google Scholar

[36] Fransz, H. G., Gonzalez, S. R. & Klein Breteler, W. C. M. (1989). Fecundity as a factor controlling the seasonal population cycle in Temora longicornis (Copepoda, Calanoida). In J. S. Ryland & P. A. Tyler (Eds.), Reproduction, genetics and distributions of marine organisms. Procedings of the 23rd European Marine Biology Symposium (pp. 83–89) Olsen and Olsen, Fredensborg, Denmark. Search in Google Scholar

[37] Fransz, H. G. & Gonzalez, S. R. (1991). Daily egg production of Temora longicornis (Copepoda, Calanoida) during winter and early spring in the Marsdiep (southern North Sea). Hydrobiol. Bull. 25(1), 61–64. http://dx.doi.org/10.1007/BF0225959010.1007/BF02259590 Search in Google Scholar

[38] Fransz, H. G. Gonzalez, S. R., Cadée, G. C. & Hansen, F. C. (1992). Long-term change of Temora longicornis (Copepoda, Calanoida) abundance in a Dutch tidal inlet (Marsdiep) in relation to eutrophication. Nether. J. Sea Res. 30, 23–32. http://dx.doi.org/10.1016/0077-7579(92)90042-D10.1016/0077-7579(92)90042-D Search in Google Scholar

[39] Fryd, M., Haslund, O. H. & Wohlgemuth, O. (1991). Development, growth and egg production of two copepod species Centropages hamatus and Centropages typicus in the laboratory. J. Plankton Res. 13, 683–689. http://dx.doi.org/10.1093/plankt/13.4.68310.1093/plankt/13.4.683 Search in Google Scholar

[40] Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. (2001). Effects of size and temperature on metabolic rate. Science 293, 2248–2251. http://dx.doi.org/10.1126/science.106196710.1126/science.106196711567137 Search in Google Scholar

[41] Guisande, C., Maneiro, I., Riveiro, I., Barreiro, A., & Pazos, Y. (2002). Estimation of copepod trophic niche in the field using amino acids and marker pigments. Mar. Ecol. Prog. Ser.239, 147–156. http://dx.doi.org/10.3354/meps23914710.3354/meps239147 Search in Google Scholar

[42] Hall, C. J. & Burns, C. W. (2002). Effects of temperature and salinity on the survival and egg production of Gladioferens pectinatus Brady (Copepoda: Calanoida). Estuar. Coast. Shelf Sci., 55: 557–564 http://dx.doi.org/10.1006/ecss.2001.092310.1006/ecss.2001.0923 Search in Google Scholar

[43] Halsband, C. & Hirche, H. J. (2001). Reproductive cycles of dominant calanoid copepods in the North Sea. Mar. Ecol. Prog. Ser. 209, 219–229. http://dx.doi.org/10.3354/meps20921910.3354/meps209219 Search in Google Scholar

[44] Halsband-Lenk, C., Carlotti, F. & Greve, W. (2004). Life-history strategies of calanoid congeners under two different climate regimes: a comparison. J. Mar. Sci. 61, 709–720. 10.1016/j.icesjms.2004.03.020 Search in Google Scholar

[45] Harris, R. P. & Paffenhöfer, G. A. (1976). Feeding, growth and production of the marine planktonic copepod Temora longicornis Müller. J. Mar. Biol. Assoc.UK 56, 675–690. http://dx.doi.org/10.1017/S002531540002072510.1017/S0025315400020725 Search in Google Scholar

[46] Hernroth, L. (1985). Recommendations on methods for marine biological studies in the Baltic Sea. Mesozooplankton biomass assessment. The Baltic Marine Biologists 10, 1–32. Search in Google Scholar

[47] Hirche, H. J. (1992). Egg production of Eurytemora affinis — effect of k-strategy. Estaur. Coast.Shelf Sci., 35, 395–407. http://dx.doi.org/10.1016/S0272-7714(05)80035-610.1016/S0272-7714(05)80035-6 Search in Google Scholar

[48] Hirche, H. J., Meyer, U. & Niehoff, B. (1997). Egg production of Calanus finmarchicus - effect of food, temperature and season. Mar. Biol. 127, 609–620. http://dx.doi.org/10.1007/s00227005005110.1007/s002270050051 Search in Google Scholar

[49] Hirst, A. G. & Bunker, A. J. (2003). Growth of marine planktonic copepods: global rates and patterns in relation to chlorophyll a, temperature, and body weight. Limnol. Oceanogr. 48, 1988–2010. http://dx.doi.org/10.4319/lo.2003.48.5.198810.4319/lo.2003.48.5.1988 Search in Google Scholar

[50] Holste, L. & John, M. A. St. (2009). The effects of temperature and salinity on reproductive success of Temora longicornis in the Baltic Sea: a copepod coping with a tough situation. Mar. Biol. 156, 527–540. http://dx.doi.org/10.1007/s00227-008-1101-110.1007/s00227-008-1101-1 Search in Google Scholar

[51] Hopp, U., Maier, G. & Bleher, R. (1997) Reproduction and adult longevity of five species of planktonic cyclopoid copepods reared on different diets: a comparative study. Freshwater Biology 38, 289–300. http://dx.doi.org/10.1046/j.1365-2427.1997.00214.x10.1046/j.1365-2427.1997.00214.x Search in Google Scholar

[52] Ianora, A., Mazzocchi, M. G. & Grottoli, R. (1992). Seasonal fluctuations in fecundity and hatching success in the planktonic copepod Centropages typicus. J. Plankton Res. 14, 1483–1494. http://dx.doi.org/10.1093/plankt/14.11.148310.1093/plankt/14.11.1483 Search in Google Scholar

[53] Kiørboe, T., Møhlenberg, F. & Hamburger, K., (1985). Bioenergetics of the planktonic copepod Acartia tonsa: relation between feeding, egg production and respiration, and composition of specific dynamic action. Mar. Ecol. Prog. Ser. 26(1–2), 85–97. http://dx.doi.org/10.3354/meps02608510.3354/meps026085 Search in Google Scholar

[54] Kiørboe, T. & Nielsen, T. G. (1994). Regulation of zooplankton biomass and production in a temperate, coastal ecosystem. 1. Copepods. Limnol. Oceanogr. 39(3), 493–507. http://dx.doi.org/10.4319/lo.1994.39.3.049310.4319/lo.1994.39.3.0493 Search in Google Scholar

[55] Klein Breteler, W. C. M., Fransz, H. G. & Gonzalez, S. R. (1982). Growth and development of four calanoid copepod species under experimental and natural conditions. Nether.J.Sea Res. 16, 195–207. http://dx.doi.org/10.1016/0077-7579(82)90030-810.1016/0077-7579(82)90030-8 Search in Google Scholar

[56] Klein Breteler, W. C. M. & Gonzalez, S. R. (1986). Culture and development of Temora longicornis (Copepoda, Calanoida) at different conditions of temperature and food. Syllogeus 58, 71–85.. Search in Google Scholar

[57] Klein Breteler, W. C. M. & Gonzalez, S. R. (1986). Culture and development of Temora longicornis (Copepoda, Calanoida) cultured at different temperature and food conditions. Mar. Ecol. Prog. Ser. 119, 99–110. http://dx.doi.org/10.3354/meps11909910.3354/meps119099 Search in Google Scholar

[58] Kleppel, G. S. (1993). On the diets of calanoid copepods. Mar. Ecol. Prog. Ser. 99, 183–195. http://dx.doi.org/10.3354/meps09918310.3354/meps099183 Search in Google Scholar

[59] Koski, M., Engstrom, J. & Viitasalo, M. (1999). Reproduction and survival of the calanoid copepod Eurytemora affinis fed with toxic and non-toxic cyanobacteria. Mar. Ecol. Prog. Ser. 186, 187–197. http://dx.doi.org/10.3354/meps18618710.3354/meps186187 Search in Google Scholar

[60] Koski, M., Dutz, J. & Klein Breteler, W. C. M. (2005). Selective grazing of Temora longicornis in different stages of a Phaeocystis globosa bloom — a mesocosm study. Harmful Algae 4, 915–927. http://dx.doi.org/10.1016/j.hal.2004.12.00210.1016/j.hal.2004.12.002 Search in Google Scholar

[61] Kreibich, T., Saborowski, R., Hagen, W. et al., (2008). Short-term variation of nutritive and metabolic parameters in Temora longicornis females (Crustacea, Copepoda) as a response to diet shift and starvation. Helgoland Mar. Res. 62, 241–249. http://dx.doi.org/10.1007/s10152-008-0112-010.1007/s10152-008-0112-0 Search in Google Scholar

[62] Kozlowsky-Suzuki, B., Carlsson, P., Rühl, A. & Granéli, E. (2006). Food selectivity and grazing impact on toxic Dinophysis spp. by copepods feeding on natural plankton assemblages. Harmful Algae 5, 57–88. http://dx.doi.org/10.1016/j.hal.2005.05.00210.1016/j.hal.2005.05.002 Search in Google Scholar

[63] Landry, M. R. (1978). Population dynamics and production of a planktonic marine copepod, Acartia clause, in a small temperature lagoon on San Juan Island, Washington. Inter. Rev.ges. Hydrob.63, 77–119. 10.1002/iroh.19780630106 Search in Google Scholar

[64] Last, J. M. (1980). The food of twenty species of fish larvae in the west-central North Sea. Fish. Res. Tech. Report, Lowestoft 60, 1–44. Search in Google Scholar

[65] Lee, H. W., Ban, S., Ikeda, T. & Matsuishi, T. (2003). Effect of temperature on development, growth and reproduction in the marine copepod Pseudocalanus newmani at satiating food condition. J. Plankton Res. 25(3), 261–271. http://dx.doi.org/10.1093/plankt/25.3.26110.1093/plankt/25.3.261 Search in Google Scholar

[66] Makino, W. & Ban, S. (2000). Response of life history traits to food conditions in a cyclopoid copepod from an oligotrophic environment. Limnol. Oceanogr. 45, 396–407. http://dx.doi.org/10.4319/lo.2000.45.2.039610.4319/lo.2000.45.2.0396 Search in Google Scholar

[67] Mauchline, J. (1998). The Biology of Calanoid Copepods. San Diego: Academic Press. Search in Google Scholar

[68] McLaren, I. A. & Leonard, A. (1995). Assessing the equivalence of growth and egg production of copepods. ICES J. Mar. Sci. 52, 397–408. http://dx.doi.org/10.1016/1054-3139(95)80055-710.1016/1054-3139(95)80055-7 Search in Google Scholar

[69] Maps, F., Runge, J. A., Zakardjian, B. & Joly, P. (2005). Egg production and hatching success of Temora longicornis (Copepoda, Calanoida) in the southern Gulf of St. Lawrence. Mar. Ecol.Prog. Ser. 285, 117–128. http://dx.doi.org/10.3354/meps28511710.3354/meps285117 Search in Google Scholar

[70] Marshall, S. M. & Orr, A. P. (1952). On the biology of Calanus finmarchicus. VII. Factors affecting egg production. J. Mar. Biol. Assoc.UK 30, 527–547. http://dx.doi.org/10.1017/S002531540001295910.1017/S0025315400012959 Search in Google Scholar

[71] Mudrak, S. (2004). Short- and long-term variability of zooplankton in coastal Baltic waters: using the Gulf of Gdańsk as an example. Unpublished doctoral dissertation, University of Gdańsk, Gdynia, Poland (in Polish). Search in Google Scholar

[72] Mullin, M. M. & Brooks, E. R. (1970). The effect of concentration of food on body weight, cumulative ingestion, and rate of growth of the marine copepod Calanus helgolandicus. Limnol.Oceanogr. 15, 748–755. http://dx.doi.org/10.4319/lo.1970.15.5.074810.4319/lo.1970.15.5.0748 Search in Google Scholar

[73] Parrish, K. K. & Wilson, D. F. (1978). Fecundity studies on Acartia tonsa (Copepods: Calanoidae) in standardized culture. Mar. Biol. 46, 65–81. http://dx.doi.org/10.1007/BF0039382210.1007/BF00393822 Search in Google Scholar

[74] Peters, J. (2006). Lipids in key copepod species of the Baltic Sea and North Sea — implications for life cycles, trophodynamics and food quality. Published doctoral dissertation, University Bremen, Bremen. Search in Google Scholar

[75] Peters, J., Dutz, J. & Hagen, W. (2007). Role of essential fatty acids on the reproductive success of the copepod Temora longicornis in the North Sea. Mar. Ecol. Prog. Ser. 341, 153–163. http://dx.doi.org/10.3354/meps34115310.3354/meps341153 Search in Google Scholar

[76] Peterson, W. T. (1985). Abundance, age structure and in situ egg production rates of the copepod Temora longicornis in Long Island Sound, New York. Bull. Mar. Sci. 37(2), 726–738. Search in Google Scholar

[77] Peterson, W. T. & Bellantoni, D. C. (1987). Relationship between water column stratification, phytoplankton cell size and copepod fecundity in Long Island Sound and off Central Chile. In A.I.L. Payne, J.A. Gulland & K.H. Brink (Eds.), The Benguela and comparable ecosystems: South African (pp. 411–421). J. Mar. Sci. 5. Search in Google Scholar

[78] Peterson, W. T., Tiselius, P. & Kiørboe, T. (1991). Copepod egg production, molting and growth rates, and secondary production, in the Skagerrak in August 1988. J. Plankton Res. 13, 131–154. http://dx.doi.org/10.1093/plankt/13.1.13110.1093/plankt/13.1.131 Search in Google Scholar

[79] Peterson, W. T. & Kimmerer, W. J. (1994). Processes controlling recruitment of the marine calanoid copepod Temora longicornis in Long Island Sound: egg production, egg mortality, and cohort survival rates. Limnol. Oceanogr. 39(7), 1594–1605. http://dx.doi.org/10.4319/lo.1994.39.7.159410.4319/lo.1994.39.7.1594 Search in Google Scholar

[80] Poli, J. M. & Castel, J. (1983). Cycle biologique en laboratoire d`un copépode planctonique de l`estuaire de la Gironde: Eurytemora hirundoides (Nordquist, 1888). Vie Milieu 33, 79–86. Search in Google Scholar

[81] Razoul, S. (1975). Fécondite, maturité sexuelle et différenciation de l`appareil genital des femelles de deux copepods planctoniques: Centropages typicus et Temora stylifera. Pubbl. Stn. Zool. Napoli 39, 297–306. Search in Google Scholar

[82] Sautour, B. & Castel, J. (1999). Grazing activity of mesoplanktonic copepods in a shallow bay during an algal spring bloom (Marennes-Oléron Bay, France). J. Mar. Biol Assoc. UK. 79, 73–84. http://dx.doi.org/10.1017/S002531549800008310.1017/S0025315498000083 Search in Google Scholar

[83] Sekiguchi, H., McLaren, I. A. & Corkett, C. J. (1980). Relationship between growth rate and egg production in the copepod Acartia clausi hudsonica. Mar. Biol. 58, 133–138. http://dx.doi.org/10.1007/BF0039612410.1007/BF00396124 Search in Google Scholar

[84] Smith, S. L. & Lane, P. V. Z. (1985). Laboratory studies of the marine copepod Centropages typicus: egg production and development rates. Mar. Biol. 85, 153–162. http://dx.doi.org/10.1007/BF0039743410.1007/BF00397434 Search in Google Scholar

[85] Wiktor, K. (1990). Zooplankton biomass in the coastal waters of Gdańsk Gulf. Oceanography12, 109–134 (in Polish). Search in Google Scholar

[86] Van Rijswijk, P., Bakker, C. & Vink, M. (1989). Daily fecundity of Temora longicornis (Copepoda, Calanoida) in the Osterschelde estuary (SW Netherlands). Nether. J. Sea Res. 23, 293–303 http://dx.doi.org/10.1016/0077-7579(89)90050-110.1016/0077-7579(89)90050-1 Search in Google Scholar

[87] Zismann, L., Berdugo, V. & Kimor, B. (1974). The food and feeding habits of early stages of grey mullets in the Haifa Bay region. Aquaculture 6, 59–75. http://dx.doi.org/10.1016/0044-8486(75)90089-710.1016/0044-8486(75)90089-7 Search in Google Scholar

eISSN:
1897-3191
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Chemistry, other, Geosciences, Life Sciences