Zacytuj

[1] Arndt, H. (1991). On the importance of planktonic protozoans in the eutrophication process of the Baltic Sea. Int. Revue ges. Hydrobiol. 3, 387–396. http://dx.doi.org/10.1002/iroh.1991076031110.1002/iroh.19910760311 Search in Google Scholar

[2] Arndt, H., Jost G. & Wasmund N. (1990). Dynamics of pelagic ciliates in eutrophic estuarine waters: importance of functional groups among ciliates and responses to bacterial and phytoplankton production. Arch. Hydrobiol. Beih. Ergebn. Limnol. 34, 239–245. Search in Google Scholar

[3] Azam, F., Fenchel T., Field J. D., Gray J. S., Meyer-Reil L. A. & Thingstad F. (1983). The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–263. http://dx.doi.org/10.3354/meps01025710.3354/meps010257 Search in Google Scholar

[4] Beaver, J.R. & Crisman T.L. (1989). The role of ciliated protozoa in pelagic freshwater ecosystems. Microb. Ecol. 17, 111–136. http://dx.doi.org/10.1007/BF0201184710.1007/BF0201184724197241 Search in Google Scholar

[5] Bloem, J., Bär-Glissen M-J. B. & Cappenberg T. E. (1986). Fixation, counting and manipulation of heterotrophic nanoflagellates. Appl. Environ. Microbiol. 52, 1226–1272. 10.1128/aem.52.6.1266-1272.198623922016347232 Search in Google Scholar

[6] Boikova, E. (1984). Ecological character of protozoans (Ciliata, Flagellata) in the Baltic Sea. Ophelia 3, 23–32. Search in Google Scholar

[7] Børsheim, K. Y. & Bratbak G. (1987). Cell volume to carbon conversion factors for a bacteriovorous Monas sp. enriched from seawater. Mar. Ecol. Prog. Ser. 36, 171–175. http://dx.doi.org/10.3354/meps03617110.3354/meps036171 Search in Google Scholar

[8] Bralewska, J. & Witek Z. (1995). Heterotrophic dinoflagellates in the ecosystem of the Gulf of Gdańsk. Mar. Ecol. Prog. Ser. 117, 241–248. http://dx.doi.org/10.3354/meps11724110.3354/meps117241 Search in Google Scholar

[9] Brandt, S. M. & Sleigh M. A. (2000). The quantitative occurrence of different taxa of heterotrophic flagellates in Southampton Water, U.K. Estuar. Coast. Shelf Sci. 51, 91–102. http://dx.doi.org/10.1006/ecss.2000.060710.1006/ecss.2000.0607 Search in Google Scholar

[10] Caron, D. A. (1983). Technique for enumeration of heterotrophic and phototrophic nanoplankton, using epifluorescence microscopy, and comparison with other procedures. Appl. Environ. Microbiol. 46, 491–498. 10.1128/aem.46.2.491-498.198323942816346372 Search in Google Scholar

[11] Caron, D. A. (2000). Symbiosis and mixotrophy among pelagic microorganisms. In D. L. Kirchman (Ed.), Microbial ecology of the oceans (pp. 495–523). New York: Wiley-Liss. Search in Google Scholar

[12] Caron, D. A. & Swanberg N. R. (1990). The ecology of planktonic sarcodines. Aquat. Sci. 3, 147–180. Search in Google Scholar

[13] Crawford, D. W. (1989). Mesodinium rubrum: the phytoplankter that wasn’t. Mar. Ecol. Prog. Ser. 58, 161–174. http://dx.doi.org/10.3354/meps05816110.3354/meps058161 Search in Google Scholar

[14] Edler, L. (1979). Recommendations on methods for marine biological studies. Malmö: BMB Publ. Search in Google Scholar

[15] Esteban, G. F., Fenchel T. & Finlay B. J. (2010). Mixotrophy of ciliates. Protist 161, 621–641. http://dx.doi.org/10.1016/j.protis.2010.08.00210.1016/j.protis.2010.08.00220970377 Search in Google Scholar

[16] Garstecki, T., Verhoeven R., Wickham S. A. & Arndt H. (2000). Benthic-pelagic coupling: a comparison of the community structure of benthic and planktonic heterotrophic protists in shallow inlets of the southern Baltic. Fresh. Biol. 45, 147–167. http://dx.doi.org/10.1046/j.1365-2427.2000.00676.x10.1046/j.1365-2427.2000.00676.x Search in Google Scholar

[17] Granda, A. P. & Álvarez R. A. (2008). The annual cycle of nanoflagellates in the Central Cantabrian Sea (Bay of Biscay). J. Marine Syst. 72, 298–308. http://dx.doi.org/10.1016/j.jmarsys.2007.09.00910.1016/j.jmarsys.2007.09.009 Search in Google Scholar

[18] Grinienė, E., Mažeikaitė S. & Gasiūnaitė Z. R. (2011). Inventory of the taxonomical composition of the plankton ciliates in the Curonian Lagoon (SE Baltic Sea). Oceanol. Hydrobiol. Stud. 40, 86–95. http://dx.doi.org/10.2478/s13545-011-0045-010.2478/s13545-011-0045-0 Search in Google Scholar

[19] Hansen, P. J. (1991). Quantitative importance and trophic role of heterotrophic dinoflagellates in a coastal pelagial food web. Mar. Ecol. Prog. Ser. 73, 253–261. http://dx.doi.org/10.3354/meps07325310.3354/meps073253 Search in Google Scholar

[20] HELCOM. (1998). The third Baltic Sea pollution load compilation. Helsinki: Balt. Sea Environ. Proc. 70. Search in Google Scholar

[21] HELCOM. (2006). Biovolumes and size classes of phytoplankton in the Baltic Sea. Helsinki: Balt. Sea Environ. Proc. 106. Search in Google Scholar

[22] Ikävalko, J. (1998). Further observations on flagellates within sea ice in northern Bothnian Bay, the Baltic Sea. Polar Biol. 19, 323–329. http://dx.doi.org/10.1007/s00300005025310.1007/s003000050253 Search in Google Scholar

[23] Ikävalko, J. & Thomsen H. A. (1997). The Baltic Sea ice biota (March 1994): a study of the protistan community. Eur. J. Protistol. 33, 229–243. http://dx.doi.org/10.1016/S0932-4739(97)80001-610.1016/S0932-4739(97)80001-6 Search in Google Scholar

[24] Johnson, M. D. & Stoecker D. K. (2005). Role of feeding in growth and photophysiology of Myrionecta rubra. Aquat. Microb. Ecol. 39, 303–312. http://dx.doi.org/10.3354/ame03930310.3354/ame039303 Search in Google Scholar

[25] Kirchman, D. L. & Williams P. J. LeB. (2000). Introduction. In D. L. Kirchman (Ed.), Microbial ecology of the oceans (pp. 1–11). New York: Wiley-Liss. Search in Google Scholar

[26] Kiss, Á. K., & Ács É., Kiss K. T. & Török J. K. (2009). Structure and seasonal dynamics of the protozoan community (heterotrophic flagellates, ciliates, amoeboid protozoa) in the plankton of a large river (River Danube, Hungary). Eur. J. Protistol. 45, 121–138. http://dx.doi.org/10.1016/j.ejop.2008.08.00210.1016/j.ejop.2008.08.00219285382 Search in Google Scholar

[27] Kivi, K. (1986). Annual succession of pelagic protozoans and rotifers in the Tvärminne Storfjärden, SW coast of Finland. Ophelia Suppl. 4, 101–110. Search in Google Scholar

[28] Kopylov, A. I., Kosolapov D. B., Romanenko A. V. & Degermendzhy A. G. (2002). Structure of planktonic microbial food web in a brackish stratified Siberian lake. Aquat. Ecol. 36, 179–204. http://dx.doi.org/10.1023/A:101567891861110.1023/A:1015678918611 Search in Google Scholar

[29] Kwiatkowska, M. (1999). Autotrophic and heterotrophic dinoflagellates in the coastal zone of the Gulf of Gdańsk. Unpublished master dissertation, University of Gdańsk, Gdańsk, Poland. (in Polish) Search in Google Scholar

[30] Leakey, R. J. G., Burkill P. H. & Sleigh M. A. (1992). Planktonic ciliates in Southampton Water: abundance, biomass, production, and role in pelagic carbon flow. Mar. Biol. 114, 67–83. 10.1007/BF00350857 Search in Google Scholar

[31] Leakey, R. J. G., Burkill P. H. & Sleigh M. A. (1993). Planktonic ciliates in Southampton Water: quantitative taxonomic studies. J. Mar. Biol. Ass. U.K. 73, 579–594. http://dx.doi.org/10.1017/S002531540003312910.1017/S0025315400033129 Search in Google Scholar

[32] Leakey, R. J. G., Burkill P. H. & Sleigh M. A. (1994). A comparison of fixatives for the estimation of abundance and biovolume of marine planktonic ciliate populations. J. Plankton Res. 16, 375–389. http://dx.doi.org/10.1093/plankt/16.4.37510.1093/plankt/16.4.375 Search in Google Scholar

[33] Leppänen, J.-M. & Bruun J.-E. (1988). Cycling of organic matter during the vernal growth period in the open northern Baltic Proper. IV. Ciliate and mesozooplankton species composition, biomass, food intake, respiration, and production. Finn. Mar. Res. 255, 55–78. Search in Google Scholar

[34] Lesen, A. E., Juhl A. R. & Anderson O. R. (2010). Heterotrophic microplankton in the lower Hudson River Estuary: potential importance of naked, planktonic amebas for bacterivory and carbon flux. Aquat. Microb. Ecol. 61, 45–56. http://dx.doi.org/10.3354/ame0143410.3354/ame01434 Search in Google Scholar

[35] Lessard, E. J. & Swift E. (1985). Dinoflagellates from the North Atlantic classified as phototrophic or heterotrophic by epifluorescence microscopy. J. Plankton Res. 8, 1209–1215. http://dx.doi.org/10.1093/plankt/8.6.120910.1093/plankt/8.6.1209 Search in Google Scholar

[36] Levinsen, H., Nielsen T. G. & Hansen B. W. (2000). Annual succession of marine pelagic protozoans in Disko Bay, West Greenland, with emphasis on winter dynamics. Mar. Ecol. Prog. Ser. 206, 119–134. http://dx.doi.org/10.3354/meps20611910.3354/meps206119 Search in Google Scholar

[37] Mackiewicz, T. (1991). Composition and seasonal changes of nanoflagellates in the Gdańsk Basin (Southern Baltic). Acta Ichthyol. Piscat. 21, 125–134. 10.3750/AIP1991.21.S.13 Search in Google Scholar

[38] Majewski, A. (1987). Characteristics of waters. In B. Augustowski (Ed.), Southern Baltic (pp. 173–217). Wrocław: Ossolineum. (in Polish) Search in Google Scholar

[39] Marshall, S. M. (1969). Protozoa. Order: Tintinnida. Cons. Int. Explor. Mer. Zooplankton Sheets, 117–127. Search in Google Scholar

[40] Mathes, J. & Arndt H. (1995). Annual cycle of protozooplankton (ciliates, flagellates and sarcodines) in relation to phyto- and metazooplankton in Lake Neumühler See (Mecklenburg, Germany). Arch. Hydrobiol. 134, 337–358. 10.1127/archiv-hydrobiol/134/1995/337 Search in Google Scholar

[41] Mironova, E. I., Telesh I. V. & Skarlato S. O. (2009). Planktonic ciliates of the Baltic Sea (a review). Inland Water Biol. 2, 13–24. http://dx.doi.org/10.1134/S199508290901003910.1134/S1995082909010039 Search in Google Scholar

[42] Montagnes, D. J. S., Allen J., Brown L., Bulit C., Davidson R., Fielding S., Heath M., Holliday N. P., Rasmussen J., Sanders R., Waniek J. J. & Wilson D. (2010). Role of ciliates and other microzooplankton in the Irminger Sea (NW Atlantic Ocean). Mar. Ecol. Prog. Ser. 411, 101–115. http://dx.doi.org/10.3354/meps0864610.3354/meps08646 Search in Google Scholar

[43] Müller, H. (1989). The relative importance of different ciliate taxa in the pelagic food web of Lake Constance. Microb. Ecol. 18, 261–273. http://dx.doi.org/10.1007/BF0207581310.1007/BF0207581324196206 Search in Google Scholar

[44] Piwosz, K. & Pernthaler J. (2010). Seasonal population dynamics and trophic role of planktonic nanoflagellates in coastal surface waters of the Southern Baltic. Environ. Microbiol. 12, 364–377. http://dx.doi.org/10.1111/j.1462-2920.2009.02074.x10.1111/j.1462-2920.2009.02074.x19799618 Search in Google Scholar

[45] Pollehne, F., Busch S., Jost G., Meyer-Harms B., Nausch M., Reckermann M., Schaening P., Setzkorn D., Wasmund N. & Witek Z. (1995). Primary production patterns and heterotrophic use of organic material in the Pomeranian Bay (southern Baltic). Bull. Sea Fish. Inst. 136, 43–60. Search in Google Scholar

[46] Rogerson, A., Anderson O. R. & Vogel C. (2003). Are planktonic naked amoebae predominately floc associated or free in the water column? J. Plankton Res. 25, 1359–1365. http://dx.doi.org/10.1093/plankt/fbg10210.1093/plankt/fbg102 Search in Google Scholar

[47] Rychert, K. (2005). Protozoan communities and their impact on oxygen consumption in the near-bottom zone of the Gdańsk Basin. Unpublished doctoral dissertation, Institute of Oceanology PAS, Sopot, Poland. (in Polish) Search in Google Scholar

[48] Rychert, K. (2006). Nanoflagellates in the Gdańsk Basin: coexistence between forms belonging to different trophic types. Oceanologia 48, 323–330. Search in Google Scholar

[49] Rychert, K. (2011). Communities of heterotrophic protists (protozoa) in the near-bottom zone of the Gdańsk Basin. Oceanol. Hydrobiol. Stud. 40, 68–73. http://dx.doi.org/10.2478/s13545-011-0031-610.2478/s13545-011-0031-6 Search in Google Scholar

[50] Rychert, K. & Pączkowska M. (2012). Ciliate Mesodinium rubrum in the coastal zone of the southern Baltic Sea (central Pomerania). Baltic Coastal Zone 16, 97–102. Search in Google Scholar

[51] Rychert, K. & Wielgat-Rychert M. (2008). Biodegradable organic master in the coastal waters of Central Pomerania (Ustka) and the Gulf of Gdańsk (Sopot). In E. Bajkiewicz-Grabowska & D. Borowiak (Eds), Anthropogenic and natural transformations of lakes, 2 (pp. 179–182). Gdańsk: KLUG-PTLim Publ. Search in Google Scholar

[52] Samuelsson, K., Berglund J. & Andersson A. (2006). Factors structuring the heterotrophic flagellate and ciliate community along a brackish water primary production gradient. J. Plankton Res. 28, 345–359. http://dx.doi.org/10.1093/plankt/fbi11810.1093/plankt/fbi118 Search in Google Scholar

[53] Schweizer, M., Polovodova I., Nikulina A. & Schönfeld J. (2011). Molecular identification of Ammonia and Elphidium species (Foraminifera, Rotaliida) from the Kiel Fjord (SW Baltic Sea) with rDNA sequences. Helgol. Mar. Res. 65, 1–10. http://dx.doi.org/10.1007/s10152-010-0194-310.1007/s10152-010-0194-3 Search in Google Scholar

[54] Setälä, O. & Kivi K. (2003). Planktonic ciliates in the Baltic Sea in summer: distribution, species association and estimated grazing impact. Aquat. Microb. Ecol. 32, 287–297. http://dx.doi.org/10.3354/ame03228710.3354/ame032287 Search in Google Scholar

[55] Sherr, E. B., Caron D. A. & Sherr B. F. (1993). Staining of heterotrophic protists for visualization via epifluorescence microscopy. In P. F. Kemp, B. F. Sherr, E. B. Sherr & J. J. Cole (Eds.), Handbook of methods in aquatic microbial ecology (pp. 213–227). Boca Raton: Levis Publishers. Search in Google Scholar

[56] Sherr, E. B. & Sherr B. F. (1993). Preservation and storage of samples for enumeration of heterotrophic protists. In P. F. Kemp, B. F. Sherr, E. B. Sherr & J. J. Cole (Eds.), Handbook of methods in aquatic microbial ecology (pp. 207–212). Boca Raton: Levis Publishers. Search in Google Scholar

[57] Sherr, E. B. & Sherr B. F. (1994). Bacterivory and herbivory: key roles of phagotrophic protists in pelagic food webs. Microb. Ecol. 28, 223–235. http://dx.doi.org/10.1007/BF0016681210.1007/BF0016681224186449 Search in Google Scholar

[58] Sherr, E. B. & Sherr B. F. (2002). Significance of predation by protists in aquatic microbial food webs. Antonie Leeuwenhoek 81, 293–308. http://dx.doi.org/10.1023/A:102059130726010.1023/A:1020591307260 Search in Google Scholar

[59] Šimek, K., Jürgens K., Nedoma J., Comerma M. & Armengol J. (2000). Ecological role and bacterial grazing of Halteria spp.: small freshwater oligotrichs as dominant pelagic ciliate bacterivores. Aquat. Microb. Ecol. 22, 43–56. http://dx.doi.org/10.3354/ame02204310.3354/ame022043 Search in Google Scholar

[60] Smetacek, V. (1981). The annual cycle of protozooplankton in the Kiel Bight. Mar. Biol. 63, 1–11. http://dx.doi.org/10.1007/BF0039465710.1007/BF00394657 Search in Google Scholar

[61] Strüder-Kypke, M. C. & Montagnes D. J. S. (2002). Development of web-based guides to planktonic protists. Aquat. Microb. Ecol. 27, 203–207. http://dx.doi.org/10.3354/ame02720310.3354/ame027203 Search in Google Scholar

[62] Suzuki, T. & Taniguchi A. (1998). Standing crops and vertical distribution of four groups of marine planktonic ciliates in relation to phytoplankton chlorophyll a. Mar. Biol. 132, 375–382. http://dx.doi.org/10.1007/s00227005040410.1007/s002270050404 Search in Google Scholar

[63] Suzuki, T., Yamada N. & Taniguchi A. (1998). Standing crops of planktonic ciliates and nanoplankton in oceanic waters of the western Pacific. Aquat. Microb. Ecol. 14, 49–58. http://dx.doi.org/10.3354/ame01404910.3354/ame014049 Search in Google Scholar

[64] Thomsen, H. A. (1992). Plankton from inner Danish waters. An analysis of the autotrophic and heterotrophic protists (excl. ciliates) in Kattegat. Havforskning fra Miløstyrelsen, 11, pp. 331. (in Danish) Search in Google Scholar

[65] Urrutxurtu, I., Orive E. & de la Sota A. (2003). Seasonal dynamics of ciliated protozoa and their potential food in an eutrophic estuary (Bay of Biscay). Estuar. Coast. Shelf Sci. 57, 1169–1182. http://dx.doi.org/10.1016/S0272-7714(03)00057-X10.1016/S0272-7714(03)00057-X Search in Google Scholar

[66] Utermöhl, H. (1958). Improving quantitative methods for phytoplankton analyses. Mitt. Int. Ver. Limnol. 9, 1–38. (in German) Search in Google Scholar

[67] van Beusekon, J. E. E., Mengedoht D., Augustin Ch. B., Schilling M. & Boersma M. (2009). Phytoplankton, protozooplankton and nutrient dynamics in the Bornholm Basin (Baltic Sea) in 2002–2003 during the German GLOBEC Project. Int. J. Earth Sci. 98, 251–260. http://dx.doi.org/10.1007/s00531-007-0231-x10.1007/s00531-007-0231-x Search in Google Scholar

[68] Verity, P. G. & Langdon C. (1984). Relationships between lorica volume, carbon, nitrogen, and ATP content of tintinnids in Narragansett Bay. J. Plankton Res. 6, 859–867. http://dx.doi.org/10.1093/plankt/6.5.85910.1093/plankt/6.5.859 Search in Google Scholar

[69] Vørs, N. (1992). Heterotrophic amoebae, flagellates and heliozoa from the Tvärminne area, Gulf of Finland, in 1988–1990. Ophelia 36, 1–109. http://dx.doi.org/10.1080/00785326.1992.1042993010.1080/00785326.1992.10429930 Search in Google Scholar

[70] Wasik, A. & Mikołajczyk E. (1996). The seasonal distribution of hyaline Helicostomella subulata and agglutinated Tintinnopsis labiancoi — dominants of the Baltic Tintinnina (Ciliophora). Oceanologia 38, 405–418. Search in Google Scholar

[71] Weitere, M. & Arndt H. (2002). Water discharge-regulated bacteria-heterotrophic nanoflagellate (HNF) interactions in the water column of the River Rhine. Microb. Ecol. 44, 19–29. http://dx.doi.org/10.1007/s00248-002-2010-310.1007/s00248-002-2010-312019464 Search in Google Scholar

[72] Witek, B. & Pliński M. (2005). The occurrence of dinoflagellates in the phytoplankton of the Gulf of Gdańsk coastal zone in 1994–1997. Oceanol. Hydrobiol. Stud. 2, 63–70. Search in Google Scholar

[73] Witek, M. (1994). Planktonic ciliates of the Gdańsk Basin. Unpublished doctoral dissertation, Sea Fisheries Institute, Gdynia, Poland. (in Polish) Search in Google Scholar

[74] Witek, M. (1998). Annual Changes of Abundance and Biomass of Planktonic Ciliates in the Gdańsk Basin, Southern Baltic. Internat. Rev. Hydrobiol. 83, 163–182. http://dx.doi.org/10.1002/iroh.1998083020710.1002/iroh.19980830207 Search in Google Scholar

[75] Witek, Z. (1995). Biological production and its utilization within a marine ecosystem in the western Gdańsk Basin. Gdynia: Sea Fisheries Institute Publ. (in Polish) Search in Google Scholar

[76] Witek, Z., Ochocki S., Maciejowska M., Pastuszak M., Nakonieczny J., Podgórska B., Kownacka J. M., Mackiewicz T. & Wrzesińska-Kwiecień M. (1997). Phytoplankton primary production and its utilization by the pelagic community in the coastal zone of the Gulf of Gdańsk (southern Baltic). Mar. Ecol. Prog. Ser. 148, 169–186. http://dx.doi.org/10.3354/meps14816910.3354/meps148169 Search in Google Scholar

[77] Wrzesińska-Kwiecień, M. & Mickiewicz T. (1995). Protozooplankton of the Pomeranian Bay (southern Balic). Bull. Sea Fish. Inst. 136, 89–95. Search in Google Scholar

[78] Yang, E. J., Choi J. K. & Hyun J.-H. (2008). Seasonal variation in the community and size structure of nano- and microzooplankton in Gyeonggi Bay, Yellow Sea. Estuar. Coast. Shelf Sci. 77, 320–330. http://dx.doi.org/10.1016/j.ecss.2007.09.03410.1016/j.ecss.2007.09.034 Search in Google Scholar

eISSN:
1897-3191
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Chemistry, other, Geosciences, Life Sciences