Otwarty dostęp

Mercury distribution in muscles and internal organs of the juvenile and adult Baltic cod (Gadus morrhua callarias Linnaeus, 1758)


Zacytuj

[1] Amlund, H., Lundebye, A.K., Berntssen, M.H.G., 2007. Accumulation and elimination of methylmercury in Atlantic cod (Gadus morhua L.) following dietary exposure. Aquatic Toxicology 83, 323–330. http://dx.doi.org/10.1016/j.aquatox.2007.05.00810.1016/j.aquatox.2007.05.008 Search in Google Scholar

[2] Baatrup, E., Danscher, G., 1987. Cytochemical demonstration of mercury deposits in trout liver and kidney following methyl mercury intoxication: differentiation of two mercury pools by selenium. Ecotoxicology and Environmental Safety 14, 129–141. http://dx.doi.org/10.1016/0147-6513(87)90055-810.1016/0147-6513(87)90055-8 Search in Google Scholar

[3] Belger, L., Forsberg, B.R., 2006. Factors controlling Hg levels in two predatory fish species in the Negro River Basin, Brazilian Amazon. Science of the Total Environment 367, 451–459. http://dx.doi.org/10.1016/j.scitotenv.2006.03.03310.1016/j.scitotenv.2006.03.03316690103 Search in Google Scholar

[4] Block, R.J., Weiss, K.W., 1956. Amino Acid Handbook. Charles Thomas, Springfield, p. 386. Search in Google Scholar

[5] Boudou, A., Ribeyre, F., 1983. Contamination of aquatic biocenoses by mercury compounds: an experimental ecotoxicological approach. in: Nriagu, J.O., (Ed.). Aquatic Toxicology. John Wiley & Sons, New York, pp. 73–116. Search in Google Scholar

[6] Boudou, A., Ribeyre, F., 1996. Mercury in the food webs: accumulation and transfer mechanisms. in: Sigel, A., Sigel, H., (Eds.), Mercury and Its Effects on Environment and Biology. Marcel Dekker, New York 7, pp. 289–319. Search in Google Scholar

[7] Burger, J., Gochfeld, M., 2007. Risk to consumers from mercury in Pacific cod (Gadusmacrocephalus) from the Aleutians: Fish age and size effects. Environmental Research 105, 276–284. http://dx.doi.org/10.1016/j.envres.2007.05.00410.1016/j.envres.2007.05.00417599825 Search in Google Scholar

[8] Clarkson, T.W., 1997. The toxicology of mercury. Critical Reviews in Clinical Laboratory Sciences 34, 369–403. http://dx.doi.org/10.3109/1040836970899809810.3109/104083697089980989288445 Search in Google Scholar

[9] Clarkson, T.W., 2002. The three modern faces of mercury. Environmental Health Perspectives 110, 11–23. http://dx.doi.org/10.1289/ehp.02110s11110.1289/ehp.02110s111124114411834460 Search in Google Scholar

[10] Chou Chiu, L., 2007. A time series of mercury accumulation and improvement of dietary feed in net caged Atlantic salmon (Salmosalar), Marine Pollution Bulletin 54, 720–725. http://dx.doi.org/10.1016/j.marpolbul.2007.01.02410.1016/j.marpolbul.2007.01.02417382970 Search in Google Scholar

[11] Ciardullo, S., Aureli, F., Coni, E., Guandalini, E., Iosi, F., Raggia, A., Ruo, G., Cubadda, F., 2008, Bioaccumulation Potential of Dietary Arsenic, Cadmium, Lead, Mercury, and Selenium in Organs and Tissues of Rainbow Trout (Oncorhyncus mykiss) as a Function of Fish Growth. Journal and Agricultural and Food Chemestry 56, 2442–2451. http://dx.doi.org/10.1021/jf703572t10.1021/jf703572t18327907 Search in Google Scholar

[12] Cizdziel, J., Hinners, T., Cross, C., Pollard, J., 2003. Distribution of mercury in tissues of five species of freshwater fish from Lake Mead, USA. Journal of Environmental Monitoring 5, 802–807. http://dx.doi.org/10.1039/b307641p10.1039/b307641p14587853 Search in Google Scholar

[13] Downs, S.G., MacLeod, C.L., Lester, J.N., 1998. Mercury in precipitation and its relation to bioaccumulation in fish: a literature review. Water Air and Soil Pollution 108, 149–187. http://dx.doi.org/10.1023/A:100502391681610.1023/A:1005023916816 Search in Google Scholar

[14] Falkowska, L., Kwaśniak, J., Bełdowska, M., 2010. The influence of the trophic level on changes in the merkury concentrations in fish from the coastal zone of the southern Baltic. Oceanological and Hydrobiological Studies 39,1, 5–22. Search in Google Scholar

[15] Fitzgerald, W.F., Clarkson, T.W., 1991. Mercury and monomethylmercury: present and future concerns. Environ Health Perspectives 96, 159–166. http://dx.doi.org/10.1289/ehp.919615910.1289/ehp.9196159 Search in Google Scholar

[16] Fitzgerald, W.F., Mason, R.P., 1997. Biochemical cycling of mercury in the marine environment, in: Sigel, A., Sigel, H. (Eds.) Mercury and Its Effects on Environment and Biology. Marcel Decker Inc, New York, pp. 53–111. Search in Google Scholar

[17] Foster EP, Drake, D.L., DiDomenico, G., 2000. Seasonal changes and tissue distribution of mercury in largemouth bass (Micropterussalmoides) from Dorena Reservoir, Oregon. Archives and Environmental of Contamination of Toxicology 38, 78–82. http://dx.doi.org/10.1007/s00244991001010.1007/s002449910010 Search in Google Scholar

[18] Giblin, F.J., Massaro, E.J., 1973. Pharmacodynamics of methyl mercury in the rainbow trout (Salmogairdneri): tissue uptake, distribution and excretion. Toxicology and Applied Pharmacology 24, 81–91. http://dx.doi.org/10.1016/0041-008X(73)90183-X10.1016/0041-008X(73)90183-X Search in Google Scholar

[19] Harris, H., Pickering, I., George, G., 2003. The chemical form of mercury in fish. Science 301, pp. -1203. http://dx.doi.org/10.1126/science.108594110.1126/science.1085941 Search in Google Scholar

[20] Havelková, M., Dušek, L., Némethová, D., Poleszczuk, G., Svobodová, Z., 2008. Comparison of Mercury Distribution Between Liver and Muscle — A Biomonitoring of Fish from Lightly and Heavily Contaminated Localities; Sensors 8, 4095–4109, doi: 10.3390/s8074095. http://dx.doi.org/10.3390/s807409510.3390/s8074095 Search in Google Scholar

[21] Houserova’, P., Kuba’n, V., Kra’cmar, S., Sitko, J., 2007. Total mercury and mercury species in birds and fish in an aquatic ecosystem in the Czech Republic. Environmental Pollution 145, 185–194. http://dx.doi.org/10.1016/j.envpol.2006.03.02710.1016/j.envpol.2006.03.027 Search in Google Scholar

[22] Kasper, D., Fernandes, E., Palermo, A., Monteiro Iozzi Dias, A.C., Ferreira, G.L., Leitão, R.P., et al. 2009. Mercury distribution in different tissues and trophic levels of fish from a tropical reservoir, Brazil Neotropical Ichthyology 7,4, 751–758. http://dx.doi.org/10.1590/S1679-6225200900040002510.1590/S1679-62252009000400025 Search in Google Scholar

[23] Kehrig, H.A., Costa, M., Moreira, I., Malm, O., 2001. Methylmercury and total mercury in estuarine organisms from Rio de Janeiro, Brazil. Environmental Science and Pollution Research 8,4, 275–279. http://dx.doi.org/10.1007/BF0298740710.1007/BF02987407 Search in Google Scholar

[24] Kosior, M., Trella, K., Jaworski, A., 2001. Fecundity of cod (Gadus morhua callarias L.) in the Southern Baltic in the late 1990s, Abbrev.: Acta Ichthyologica et Piscatoria 31,2, 55–75. 10.3750/AIP2001.31.2.05 Search in Google Scholar

[25] Leaner, J.J., Mason, R.P., 2002. Methylmercury accumulation and fluxes across the intestine of channel catfish, Ictaluruspunctatus. Comparative Biochemistry and Physiology 132C, 247–259. 10.1016/S1532-0456(02)00072-8 Search in Google Scholar

[26] Leaner, J.J., Mason, R.P., 2004. Methylmercury uptake and distribution kinetics in sheepshead minnows, Cyprinodonvariegatus, after exposure to CH3Hg-spiked food. Environmental Toxicology and Chemistry 23, 2138–2146. http://dx.doi.org/10.1897/03-25810.1897/03-25815378990 Search in Google Scholar

[27] Lindqvist, O., Johnasson, K., Aastrup, M., Andersson, A., Bringmark, L., Hovsenius, G., et al. 1991. Mercury in the Swedish environment: Recent research on causes, consequences and corrective methods. Water Air and Soil Pollution 55, 1–261. http://dx.doi.org/10.1007/BF0054242910.1007/BF00542429 Search in Google Scholar

[28] Luten, J.B., Bouquet, W., Riekwel-Booy, G., Rauchbaar, A.B., Scholte, M.W.M., 1987. Mercury in flounder, Platichtys flesus, Cod, Gadus morhua, and Perch, Perca fluviatilis, in relation to their length. Bulletin of Environmental Contamination and Toxicology 38, 318–323. http://dx.doi.org/10.1007/BF0160668110.1007/BF016066813801704 Search in Google Scholar

[29] Mason, R.P., Laporte, J.M., Andres, S., 2000. Factors controlling the bioaccumulation of mercury, methylmercury, arsenic, selenium and cadmium by freshwater invertebrates and fish. Archives and Environmental of Contamination of Toxicology 38, 283–297. http://dx.doi.org/10.1007/s00244991003810.1007/s00244991003810667925 Search in Google Scholar

[30] Maury-Brachet, R., Durrieu, G., Yannick, D., Boudou, A., 2006. Mercury distribution in fish organs and food regimes: Significant relationships from twelve species collected in French Guiana (Amazonian basin). Science of the Total Environment 368, 262–270. http://dx.doi.org/10.1016/j.scitotenv.2005.09.07710.1016/j.scitotenv.2005.09.07716266741 Search in Google Scholar

[31] Morel, F.M.M., Kraepiel, A.M.L., Amyot, M., 1998. The chemical cycle and bioaccumulation of mercury. Annual Review of Ecology and Systematics 29, 543–566. http://dx.doi.org/10.1146/annurev.ecolsys.29.1.54310.1146/annurev.ecolsys.29.1.543 Search in Google Scholar

[32] Polak-Juszczak, L., 2009. Temporal trends in the bioaccumulation of trace metals in herring, sprat, and cod from the southern Baltic Sea in the 1994–2003 period. Chemosphere 76, 1334–1339. http://dx.doi.org/10.1016/j.chemosphere.2009.06.03010.1016/j.chemosphere.2009.06.03019580989 Search in Google Scholar

[33] Simoneau, M., Lucotte, M., Garceau, S., Laliberte, D., 2005. Fish growth rates modulate mercury concentrations in walleye (Sander vitreus) from eastern Canadian lakes. Environmental Research 98, 73–82. http://dx.doi.org/10.1016/j.envres.2004.08.00210.1016/j.envres.2004.08.00215721886 Search in Google Scholar

[34] Staveland, G., Marthinsen, I., Norheim, G., Julshamn, K., 1993. Levels of environmental pollutants in flounder (Platichthys flesus L.) and cod (Gadus morhua L.) caught in the waterway of Glomma, Norway. II. Mercury and arsenic. Archives of Environmental Contamination and Toxicology 24, 187–193. http://dx.doi.org/10.1007/BF0114134710.1007/BF011413478466301 Search in Google Scholar

[35] Svobodová, Z., Piačka, V., Vykusová, B., Máchová, J., Hejtmánek, M., Hrbková, M., et all. 1995. Residues of pollutants in siluriformes from various localities of the Czech Republic. Acta Veterinaria Brno 64, 195–208. http://dx.doi.org/10.2754/avb19956402019510.2754/avb199564020195 Search in Google Scholar

[36] Svobodová, Z., Dusek, L., Hejtmánek, M., Vykusová, B., Smíd, R., 1999. Bioaccumulation of mercury in various fish species from Orlík and Kamýr Reservoirs in the Czech Republic. Ecotoxicology and Environmental Safety 43, 231–240. http://dx.doi.org/10.1006/eesa.1999.178310.1006/eesa.1999.178310381300 Search in Google Scholar

[37] Wang, W.X., Wong, R.S.K., 2003. Bioaccumulation kinetics and exposure pathways of inorganic mercury and methylmercury in a marine fish, the sweetlips Plectorhinchus gibbosus. Marine Ecology Progress Series 261, 257–268. http://dx.doi.org/10.3354/meps26125710.3354/meps261257 Search in Google Scholar

[38] Wiener, J.G., Spry, D.J., 1996. Toxicological significance of mercury in freshwater fish. in: Beyer, W.N., Heins, G.H., Redmon-Norwood, A.W., (Eds.), Environmental Contaminants in Wildlife. Lewis Publications, Boca Raton, pp. 297–339. Search in Google Scholar

[39] Wiener, J.G., Krabbenhoft, D.P., Heinz, G.H., Scheuhammer, A.M., 2003. Ecotoxicology of mercury. in: Hoffman, D.J., Rattner, B.A., Burton, G.A., Cairns, J., (Eds.), Handbook of ecotoxicology. Lewis Publ, Boca Raton 7, 409–463. 10.1201/9781420032505.ch16 Search in Google Scholar

[40] U.S. EPA. Estimated per capita fish consumption in the United States, EPA-821-C-02-003. U.S. Environmental Protection Agency, Washington, D.C., USA; August 2002. Search in Google Scholar

eISSN:
1897-3191
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Chemistry, other, Geosciences, Life Sciences