Otwarty dostęp

Performance tests using the Lexsyg luminescence reader


Zacytuj

[1] Bailey R, Yukihara E and McKeever S, 2011. Separation of quartz optically stimulated luminescence components using green (525 nm) stimulation. Radiation Measurements 46(8): 643–648, DOI 10.1016/j.radmeas.2011.06.005. http://dx.doi.org/10.1016/j.radmeas.2011.06.00510.1016/j.radmeas.2011.06.005Search in Google Scholar

[2] Ballarini M, Wintle AG and Wallinga J, 2006. Spatial variation of dose rate from beta sources as measured using single grains. Ancient TL 24(1): 1–7. Search in Google Scholar

[3] Cunningham AC, Wallinga J and Minderhoud PSJ, 2011. Expectations of scatter in equivalent-dose distributions when using multi-grain aliquots for OSL dating. Geochronometria 38(4): 424–431, DOI 10.2478/s13386-011-0048-z. http://dx.doi.org/10.2478/s13386-011-0048-z10.2478/s13386-011-0048-zSearch in Google Scholar

[4] Duller GAT, 2007. Assessing the error on equivalent dose estimates derived from single aliquot regenerative dose measurements. Ancient TL 25(1): 15–24. Search in Google Scholar

[5] Duller GAT and Bøtter-Jensen L, 1996. Comparison of optically stimulated luminescence signals using different stimulation wave-lengths. Radiation Measurements 26(4): 603–609, DOI 10.1016/1350-4487(96)00026-1. http://dx.doi.org/10.1016/1350-4487(96)00026-110.1016/1350-4487(96)00026-1Search in Google Scholar

[6] Duller GAT, Bøtter-Jensen L and Murray AS, 2000. Optical dating of single sand-sized grains of quartz: sources of variability. Radiation Measurements 32(5–6): 453–457, DOI 10.1016/S1350-4487(00)00055-X. http://dx.doi.org/10.1016/S1350-4487(00)00055-X10.1016/S1350-4487(00)00055-XSearch in Google Scholar

[7] Galbraith RF, 2002. A note on the variance of a background-corrected OSL count. Ancient TL 20: 49–51. Search in Google Scholar

[8] Huntley DJ, Godfrey-Smith DI and Haskell EH, 1991. Light-induced emission spectra from some quartz and feldspars. nternational Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements 18(1–2): 127–131, DOI 10.1016/1359-0189(91)90104-P. http://dx.doi.org/10.1016/1359-0189(91)90104-P10.1016/1359-0189(91)90104-PSearch in Google Scholar

[9] Lapp T, Jain M, Thomsen KJ, Murray AS and Buylaert JP, 2012. New luminescence measurement facilities in retrospective dosimetry. Radiation Measurements 47(9): 803–808, DOI 10.1016/j.radmeas.2012.02.006. http://dx.doi.org/10.1016/j.radmeas.2012.02.00610.1016/j.radmeas.2012.02.006Search in Google Scholar

[10] Lomax J, Hilgers A and Radtke U, 2011. Palaeoenvironmental change recorded in the palaeodunefields of the western Murray Basin, South Australia — New data from single grain OSL-dating. Qua-ternary Science Reviews 30(5–6): 723–736, DOI 10.1016/j.quascirev.2010.12.015. http://dx.doi.org/10.1016/j.quascirev.2010.12.01510.1016/j.quascirev.2010.12.015Search in Google Scholar

[11] Martini M and Galli A, 2007. Ionic mechanisms in the optically stimulated luminescence of quartz. Physica Status Solidi: Current Topics in Solid State Physics 4(3): 1000–1003, DOI 10.1002/pssc.200673862. http://dx.doi.org/10.1002/pssc.20067386210.1002/pssc.200673862Search in Google Scholar

[12] Murray AS and Wintle AG, 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32(1): 57–73, DOI 10.1016/S1350-4487(99)00253-X. http://dx.doi.org/10.1016/S1350-4487(99)00253-X10.1016/S1350-4487(99)00253-XSearch in Google Scholar

[13] Richter D, Pintaske R, Dornich K and Krbetschek M, 2012. A novel beta source design for uniform irradiation in dosimetric applications. Ancient TL 30(2): 57–63. Search in Google Scholar

[14] Richter D, Richter A and Dornich K, 2013. Lexsyg — A new system for luminescence research. Geochronometria 40(4): 220–228, DOI 10.2478/s13386-013-0110-0. http://dx.doi.org/10.2478/s13386-013-0110-010.2478/s13386-013-0110-0Search in Google Scholar

[15] Singarayer JS and Bailey RM, 2003. Further investigations of the quartz optically stimulated luminescence components using linear modulation. Radiation Measurements 37(4–5): 451–458, DOI 10.1016/S1350-4487(03)00062-3. http://dx.doi.org/10.1016/S1350-4487(03)00062-310.1016/S1350-4487(03)00062-3Search in Google Scholar

[16] Spooner NA, 1994. On the optical dating signal from quartz. Radiation Measurements 23(2–3): 593–600, DOI 10.1016/1350-4487(94)90105-8. http://dx.doi.org/10.1016/1350-4487(94)90105-810.1016/1350-4487(94)90105-8Search in Google Scholar

[17] Thomsen KJ, Murray AS and Bøtter-Jensen L, 2005. Sources of variability in OSL dose measurements using single grains of quartz. Radiation Measurements 39(1): 47–61, DOI 10.1016/j.radmeas.2004.01.039. http://dx.doi.org/10.1016/j.radmeas.2004.01.03910.1016/j.radmeas.2004.01.039Search in Google Scholar

[18] Vandenberghe D, 2004. Investigation of the optically stimulated luminescence dating method for application to young geological sediments. PhD Thesis, Ghent University: 358pp. http://www.semrock.com/filters.aspx. Accessed on 01.02.2014. http://www.schott.com/advanced_optics/english/products/optical-filters/index.html. Accessed on 01.02.2014 Search in Google Scholar

eISSN:
1897-1695
Język:
Angielski
Częstotliwość wydawania:
Volume Open
Dziedziny czasopisma:
Geosciences, other