1. bookTom 41 (2014): Zeszyt 3 (September 2014)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1897-1695
Pierwsze wydanie
04 Jul 2007
Częstotliwość wydawania
1 raz w roku
Języki
Angielski
Otwarty dostęp

On the influence of climatic factors on the ratio between the cosmogenic isotope 14C and total carbon in the atmosphere in the past

Data publikacji: 22 Jun 2014
Tom & Zeszyt: Tom 41 (2014) - Zeszyt 3 (September 2014)
Zakres stron: 216 - 222
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1897-1695
Pierwsze wydanie
04 Jul 2007
Częstotliwość wydawania
1 raz w roku
Języki
Angielski

[1] Bard E, Raisbeck G, Yiou F and Jouzel J, 2000. Solar irradiance during the last 1200 years based on cosmogenic nuclides. Tellus B 52(3): 985–992, DOI 10.1034/j.1600-0889.2000.d01-7.x. http://dx.doi.org/10.1034/j.1600-0889.2000.d01-7.x10.1034/j.1600-0889.2000.d01-7.xSearch in Google Scholar

[2] Beer J, Blinov A, Bonani G, Hofmann HJ, Finkel RC, Lehmann B, Oeschger H, Sigg A, Schwander J, Staffelbach T, B. Stauffer B and Suter, 1990. Use of Be-10 in polar ice to trace the 11-year cycle of solar activity. Nature 347: 164–166, DOI 10.1038/347164a0. http://dx.doi.org/10.1038/347164a010.1038/347164a0Search in Google Scholar

[3] Beer J, Joos F, Lukasczyk Ch, Mende W, Rodriguez J, Siegenthaler U and Stellmacher R, 1994. The Solar Engine and its Influence on Terrestrial Atmosphere and Climate. NATO ASI Ser., M. 25: 221–233. 10.1007/978-3-642-79257-1_14Search in Google Scholar

[4] Beer J, Mc Cracken K and von Steiger R, 2012. Cosmogenic Radionuclides: Theory and Applications in the Terrestrial and Space Environments. London. Springer: 426pp. http://dx.doi.org/10.1007/978-3-642-14651-010.1007/978-3-642-14651-0Search in Google Scholar

[5] Berggren AM, Beer J, Possnert G, Aldahan A, Kubik P, Christl M, Johnsen SJ, Abreu J and Vinther BM, 2009. A 600-year annual 10Be record from the NGRIP ice core, Greenland. Geophysical Research Letters 36: L11801, DOI 10.1029/2009GL038004. http://dx.doi.org/10.1029/2009GL03800410.1029/2009GL038004Search in Google Scholar

[6] Butzin M, Prange M and Lohmann G, 2012. Readjustment of glacial radiocarbon chronologies by self-consistent three-dimensional ocean circulation modeling. Earth and Planetary Science Letters 317–318: 177–184, DOI 10.1016/j.epsl.2011.11.046. http://dx.doi.org/10.1016/j.epsl.2011.11.04610.1016/j.epsl.2011.11.046Search in Google Scholar

[7] Dergachev VA and Ostriakov VM, 1978. O vliyanii variatsui temperaturu na uroven radiougleroda v zemnoi atmosphere (On the influence of temperature variations on the radiocarbon level in the Earth’s atmosphere). In Proc. 6th All-Union Conference “Astrophysical Phenomena and Radiocarbon”, 13–15 October 1976, Tbilisi. University of Tbilisi: 177–182. (in Russian) Search in Google Scholar

[8] Dergachev VA and Veksler VS, 1991. Primenenie radiouglerodnogo metoda dly izucheniy prirodnoi sredu proshlogo (Application of radiocarbon method for researching the natural environment in the past). Leningrad. PhTI: 258 pp. (in Russian). Search in Google Scholar

[9] Dorman LI, 1978. Osobennosti issledovaniy variatsui kosmicheskih luchei radiouglerodnum metodom (Peculiarities of cosmic ray variations studies by means of radiocarbon technique). In Proc. 6th All-Union Conference “Astrophysical Phenomena and Radiocarbon”, 13–15 October 1976, Tbilisi. University of Tbilisi: 49–96. (in Russian). Search in Google Scholar

[10] Esper J, Cook ER and Schweingruber FH, 2002. Low-Frequency Signals in Long Tree-Ring Chronologies for Reconstructing Past Temperature Variability. Science 295: 2250–2253. DOI 10.1126/science.1066208. http://dx.doi.org/10.1126/science.106620810.1126/science.106620811910106Search in Google Scholar

[11] Etheridge DM, Steele LP, Langenfelds RL, Francey RJ, Barnola J-MI and Morgan VI, 1998. Historical CO2 record derived from a spline fit (75 year cutoff) of the Law Dome DSS, DE08, and DE08-2 ice cores. Division of Atmospheric Research, CSIRO, Aspendale, Victoria, Australia. Laboratoire of Glaciologie et Geophysique de l’Environnement, Saint Martin d’Heres-Cedex, France. Antarctic CRC and Australian Antarctic Division, Hobart, Tasmania, Australia.〈http://cdiac.ornl.gov/ftp/trends/co2/lawdome.smoothed.yr75〉. Search in Google Scholar

[12] Lal D, 1987. 10Be in polar ice: data reflect changes in cosmic ray flux or polar meteorology. Geophysical Research Letters 14(8): 785–788, DOI 10.1029/GL014i008p00785. http://dx.doi.org/10.1029/GL014i008p0078510.1029/GL014i008p00785Search in Google Scholar

[13] Libby WF, 1955. Radiocarbon Dating. Chicago-London-Cambridge. 175 pp. Search in Google Scholar

[14] Lowe DC and Allan W, 2002. A simple procedure for evaluating global cosmogenic 14C production in the atmosphere using neutron monitor data. Radiocarbon 44(1): 149–157. 10.1017/S0033822200064754Search in Google Scholar

[15] Meissner KJ, 2007. Younger Dryas: A data to model comparison to constrain the strength of the overturning circulation. Geophysical Research Letters 34, L21705, DOI 10.1029/2007GL031304. http://dx.doi.org/10.1029/2007GL03130410.1029/2007GL031304Search in Google Scholar

[16] Nagovitsyn YA, 2007. Ob “obratnoi zadache” balansa radiougleroda (On inverse problem of radiocarbon balance). Proc. XI Pulkovo Int. Conf. on Solar Physics, St. Petersburg: Pulkovo, 2007: 271. (in Russian). Search in Google Scholar

[17] Ogurtsov MG, 2004. New Evidence for Long-Term Persistence in the Sun’s Activity. Solar Physics 220(1): 93–105, DOI 10.1023/B:sola.0000023439.59453.e5. http://dx.doi.org/10.1023/B:sola.0000023439.59453.e510.1023/B:sola.0000023439.59453.e5Search in Google Scholar

[18] Peristykh AN and Damon PE, 1998. Modulation of atmospheric 14C concentration by the solar wind and irradiance components of the Hale and Schwabe solar cycles. Solar Physics 177(1–2): 343–355, DOI 10.1023/A:1004982321191. http://dx.doi.org/10.1023/A:100498232119110.1023/A:1004982321191Search in Google Scholar

[19] Siegenthaler U and Sarmiento JL, 1993. Atmospheric carbon dioxide and the ocean. Nature 365: 119–125, DOI 10.1038/365119a0. http://dx.doi.org/10.1038/365119a010.1038/365119a0Search in Google Scholar

[20] Singarayer JS, Richards DA, Ridgwell A, Valdes PJ, Austin WEN and Beck JW, 2008. An oceanic origin for the increase of atmospheric radiocarbon during the Younger Dryas. Geophysical Research Letters 35(14): L14707, DOI 10.1029/2008GL034074. http://dx.doi.org/10.1029/2008GL03407410.1029/2008GL034074Search in Google Scholar

[21] Shevenell AE, Ingalls AE, Domack EW and Kelly C, 2011. Holocene Southern Ocean surface temperature variability west of the Antarctic Peninsula. Nature 470: 250–254, DOI 10.1038/nature09751. http://dx.doi.org/10.1038/nature0975110.1038/nature0975121307939Search in Google Scholar

[22] Stuiver M and Braziunas T, 1993. Sun, ocean, climate and atmospheric 14CO2, an evaluation of causal and spectral relationships. The Holocene 3(4): 289–305, DOI 10.1177/095968369300300401. http://dx.doi.org/10.1177/09596836930030040110.1177/095968369300300401Search in Google Scholar

[23] Zhilina TN, 2010. Maly lednikovy period kak odno iz kolebaniy klimata v golocene i ego posledstviya v zapadnoy Sibiri (Little Ice Age as one of the climatic oscillations during the Holocene and its consequences in West Siberia). Bulletine of the Tomsk State University 340: 206–210. (in Russian). Search in Google Scholar

[24] Takahashi T, Olafson J, Goddard JG, Chipman DW and Sutherland SC, 1993. Seasonal variation of CO2 and nutrients in the high-latitude surface oceans: A comparative study. Global Biogeochemical Cycles 7(4): 843–878, DOI 10.1029/93GB02263. http://dx.doi.org/10.1029/93GB0226310.1029/93GB02263Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo