Otwarty dostęp

Human-planted alder trees as a protection against debris flows (a dendrochronological study from the Moxi Basin, Southwestern China)


Zacytuj

[1] Bardou E and Delaloye R, 2004. Effects of ground freezing and snow avalanche deposits on debris flows in alpine environments. Natural Hazards and Earth System Sciences 4(4): 519–530, DOI 10.5194/nhess-4-519-2004. http://dx.doi.org/10.5194/nhess-4-519-200410.5194/nhess-4-519-2004Search in Google Scholar

[2] Baumann F and Kaiser KF, 1999. The Multetta debris fan, eastern Swiss Alps: a 500-year debris flow chronology. Arctic, Antarctic, and Alpine Research 31(2): 128–134, DOI 10.2307/1552601. http://dx.doi.org/10.2307/155260110.2307/1552601Search in Google Scholar

[3] Bollschweiler M, Stoffel M and Schlaeppy R, 2011. Debris-flood reconstruction in a prealpine catchment in Switzerland based on tree-ring analysis of conifers and broadleaved trees. Geografiska Annaler: Series A, Physical Geography 93(1): 1–15, DOI 10.1111/j.1468-0459.2011.00001.x. http://dx.doi.org/10.1111/j.1468-0459.2011.00001.x10.1111/j.1468-0459.2011.00001.xSearch in Google Scholar

[4] Berti M and Simoni A, 2007. Prediction of debris flow inundation areas using empirical mobility relationships. Geomorphology 90(1–2): 144–161, DOI 10.1016/j.geomorph.2007.01.014. http://dx.doi.org/10.1016/j.geomorph.2007.01.01410.1016/j.geomorph.2007.01.014Search in Google Scholar

[5] Caine N, 1980. The rainfall intensity — duration control of shallow landslides and debris lows. Geografiska Annaler 22A: 23–27. http://dx.doi.org/10.2307/52044910.2307/520449Search in Google Scholar

[6] Chiarle M, Ianotti S, Mortara G and Deline P, 2007. Recent debris flow occurrences ssociated with glaciers in the Alps. Global and Planetary Change 56(1–2): 123–136, DOI 10.1016/j.gloplacha.2006.07.003. http://dx.doi.org/10.1016/j.gloplacha.2006.07.00310.1016/j.gloplacha.2006.07.003Search in Google Scholar

[7] Clark MK, Schoenbohm LM, Royden LH, Whipple KX, Burchfiel BC, Zhang X, Tang W, Wang E and Chen L, 2004. Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns. Tectonics 23(1): TC1020, DOI 10.1029/2002TC001397. http://dx.doi.org/10.1029/2002TC00140210.1029/2002TC001402Search in Google Scholar

[8] Conway SJ, Decaulne A, Balme MR, Murray JB and Towner MC, 2010. A new approach to estimating hazard posed by debris flows in the Westfjords of Iceland. Geomorphology 114(4): 556–572, DOI 10.1016/j.geomorph.2009.08.015. http://dx.doi.org/10.1016/j.geomorph.2009.08.01510.1016/j.geomorph.2009.08.015Search in Google Scholar

[9] Dai S, 2002. Forecast on trend of geological hazard control in Sichuan Province. The Chinese Journal of Geological Hazard and Control 13: 100–101. Search in Google Scholar

[10] Decaulne A, Sæmundsson B and Petursson A, 2005. Debris flow triggered by rapid nowmelt: a case study in the Gleidarhjallli area, northwestern Iceland. Geographical Analysis A 87A: 487–500. 10.1111/j.0435-3676.2005.00273.xSearch in Google Scholar

[11] Fielding EJ, 1996. Tibet uplift and erosion. Tectonophysics 260(1–3): 55–84, DOI 10.1016/0040-1951(96)00076-5. http://dx.doi.org/10.1016/0040-1951(96)00076-510.1016/0040-1951(96)00076-5Search in Google Scholar

[12] Fiorillo F and Wilson RC, 2004. Rainfall induced debris flows in pyroclastic deposits, Campania (southern Italy). Engineering Geology 75(3–4): 263–289, DOI 10.1016/j.enggeo.2004.06.014. http://dx.doi.org/10.1016/j.enggeo.2004.06.01410.1016/j.enggeo.2004.06.014Search in Google Scholar

[13] Hrádek M and Malik I, 2007. Dendrochronological records of the floodplain morphology transformation of Desná River Valley in the last 150 years, the Hrubý Jeseník Mts. (Czech Republic). Moravian Geographical Reports 15(1): 2–10. Search in Google Scholar

[14] Ishikawa Y, Kawakami S, Morimoto Ch and Mizuhara K, 2003. Suppression of Derbis movement by forests and damage to forests by debris deposition. Journal of Forest Research 8(1): 37–47, DOI 10.1007/s103100300004. http://dx.doi.org/10.1007/s10310030000410.1007/s103100300004Search in Google Scholar

[15] Kotarba A, 1992. High-energy geomorphic events in the polish Tatra Mountains. Geographical Analysis 74A: 121–131. 10.1080/04353676.1992.11880356Search in Google Scholar

[16] Lancaster S and Hayes S, 2003. Effects of wood on debris flow runout in small mountain watersheds. Water Resources Research 39(6): 1168, DOI 10.1029/2001WR001227. http://dx.doi.org/10.1029/2001WR00122710.1029/2001WR001227Search in Google Scholar

[17] Leber D, Holawe F and Häusler H, 1995. Climatic classification of the Tibet Autonomous Region using multivariate statistical methods. GeoJournal 37(4): 451–473, DOI 10.1007/BF00806934. http://dx.doi.org/10.1007/BF0080693410.1007/BF00806934Search in Google Scholar

[18] Li Z, He Y, Yang X, Theakstone WH, Jia W, Pu T, Liu Q, He X, Song B, Zhang N, Wang S and Du J, 2010a. Changes of the Hailuogou glacier, Mt. Gongga, China, against the background of climate change during the Holocene. Quaternary International 218(1–2): 166–175, DOI 10.1016/j.quaint.2008.09.005. http://dx.doi.org/10.1016/j.quaint.2008.09.00510.1016/j.quaint.2008.09.005Search in Google Scholar

[19] Li Z, He Y, He X, Pu T, Jia W, He X, Pang H, Zhang N, Liu Q, Wang S, Zhu G, Wang S, Chang L, Du J and Xin H, 2010b. Changes of climate, glaciers and runoff in China’s monsoonal temperate glacier region during the last several decades. Quaternary International 218(1–2): 13–28, DOI 10.1016/j.quaint.2009.05.010. 10.1016/j.quaint.2009.05.010Search in Google Scholar

[20] Lin C, Shie C, Yuan B, Shieh Y and Lee S, 2003. Impact of Chi-Chi earthquake on the occurrence of landslides and debris flows: example from the Chenyulan River watershed, Nantou, Taiwan. Engineering Geology 71(1–2): 49–61, DOI 10.1016/S0013-7952(03)00125-X. 10.1016/S0013-7952(03)00125-XSearch in Google Scholar

[21] Lopez-Saez J, Corona C, Stoffel M, Gotteland A, Berger F and Liebault F, 2011. Debris flow activity in abandoned channels of the Manival torrent reconstructed with LiDAR and tree-ring data. Natural Hazards and Earth System Sciences 11(5): 1247–1257, DOI 10.5194/nhess-11-1247-2011. http://dx.doi.org/10.5194/nhess-11-1247-201110.5194/nhess-11-1247-2011Search in Google Scholar

[22] McVean DN, 1953. Alnus glutinosa (L.), (A. rotundifolia Stokes). Journal of Ecology 41: 447–465. http://dx.doi.org/10.2307/225707010.2307/2257070Search in Google Scholar

[23] Malik I, 2004. The influence of riparian trees on meandering floodplain and riverbed transformation — The case of the Mała Panew River (Opole Plain). Przegląd Geograficzny 76: 345–360, (in Polish). Search in Google Scholar

[24] Malik I, 2006. Contribution to understanding the historical evolution of meandering rivers using dendrochronological methods: example of the Mała Panew River in southern Poland. Earth Surface Processes and Landforms 31(10): 1227–1245, DOI 10.1002/esp.1331. http://dx.doi.org/10.1002/esp.133110.1002/esp.1331Search in Google Scholar

[25] Malik I and Matyja M, 2008. Bank erosion history on a mountain stream determined by means of anatomical changes in exposed tree roots over the last 100 years (Bílá Opava River — Czech Republic). Geomorphology 98(1–2): 126–142, DOI 10.1016/j.geomorph.2007.02.030. http://dx.doi.org/10.1016/j.geomorph.2007.02.03010.1016/j.geomorph.2007.02.030Search in Google Scholar

[26] Malik I and Owczarek P, 2009. Dendrochronological records of debris flow and avalanche activity in a mid — mountain forest zone (eastern Sudetes — central Europe). Geochronometria 34: 57–66, DOI 10.2478/v10003-009-0011-7. http://dx.doi.org/10.2478/v10003-009-0011-710.2478/v10003-009-0011-7Search in Google Scholar

[27] Malik I and Wistuba M, 2012. Dendrochronological methods for reconstructing mass movements — An example of landslide activity analysis using tree-ring eccentricity. Geochronometria 39(3): 180–196, DOI 10.2478/s13386-012-0005-5. http://dx.doi.org/10.2478/s13386-012-0005-510.2478/s13386-012-0005-5Search in Google Scholar

[28] Matyja M, 2007. The Significance of Trees and Coarse Woody Debris in Shaping the Debris Flow Accumulation Zone (North Slope of the Babia Góra Massif, Poland). Geographia Polonica 80: 83–101. Search in Google Scholar

[29] May ChL, 2002. Debris flow through different forest age classes in the Central Oregon Coast Range. Journal of the American Water Resources Association 38(4): 1097–1113, DOI 10.1111/j.1752-1688.2002.tb05549.x. http://dx.doi.org/10.1111/j.1752-1688.2002.tb05549.x10.1111/j.1752-1688.2002.tb05549.xSearch in Google Scholar

[30] Migoń P, Pánek T, Malik I, Hrádecký J, Owczarek P and Šilhán K, 2010. Complex landslide terrain in the Kamienne Mountains, Middle Sudetes, SW Poland. Geomorphology 124(3–4): 200–214, DOI 10.1016/j.geomorph.2010.09.024. 10.1016/j.geomorph.2010.09.024Search in Google Scholar

[31] Miller and Burnett, 2008. A probabilistic model of debris-flow delivery to stream channels, demonstrated for the Coast Range of Oregon, USA. Geomorphology 94(1–2): 184–205, DOI 10.1016/j.geomorph.2007.05.009. http://dx.doi.org/10.1016/j.geomorph.2007.05.00910.1016/j.geomorph.2007.05.009Search in Google Scholar

[32] Procter E, Bollschweiler M, Stoffel M and Neumann M, 2011. A regional reconstruction of debris-flow activity in the Northern Calcareous Alps, Austria. Geomorphology 132(1–2): 41–50, DOI 10.1016/j.geomorph.2011.04.035. http://dx.doi.org/10.1016/j.geomorph.2011.04.03510.1016/j.geomorph.2011.04.035Search in Google Scholar

[33] Reid ME, Nielsen HP and Dreiss SJ, 1988. Hydrologic factors triggering a shallow hillslope failure. Bulletin of the International Association of Engineering Geology 25: 349–361. 10.2113/gseegeosci.xxv.3.349Search in Google Scholar

[34] Stoffel MI, Conus D, Grichting M, Raetzo H, Gärtner H and Monbaron M, 2005. 400 Years of Debris-Flow Activity and Triggering Weather Conditions: Ritigraben, Valais, Switzerland. Antarctic and Alpine Research 37: 387–395, DOI 10.1657/1523-0430(2005)037[0387:YODAAT]2.0.CO;2. http://dx.doi.org/10.1657/1523-0430(2005)037[0387:YODAAT]2.0.CO;2Search in Google Scholar

[35] Stoffel M, 2010. Magnitude-frequency relationships of debris flows — A case study based on field surveys and tree-ring records. Geomorphology 116(1–2): 67–76, DOI 10.1016/j.geomorph.2009.10.009. http://dx.doi.org/10.1016/j.geomorph.2009.10.00910.1016/j.geomorph.2009.10.009Search in Google Scholar

[36] Šilhán K and Pánek T, 2010. Fossil and recent debris flows in medium-high mountains (Moravskoslezské Beskydy Mts, Czech Republic). Geomorphology 124(3–4): 238–249, DOI 10.1016/j.geomorph.2010.03.026. 10.1016/j.geomorph.2010.03.026Search in Google Scholar

[37] Šilhán K, 2012. Frequency of fast geomorphological processes in high-gradient streams: case study from the Moravskoslezské Beskydy Mts (Czech Republic) using dendrogeomorphic methods. Geochronometria 39(2): 122–132, DOI 10.2478/s13386-012-0002-8. http://dx.doi.org/10.2478/s13386-012-0002-810.2478/s13386-012-0002-8Search in Google Scholar

[38] Šilhán K, Pánek T and Hrádecký J, 2012. Tree-ring analysis in the reconstruction of slope instabilities associated with earthquakes and precipitation (the Crimean Mountains, Ukraine). Geomorphology 173–174: 174–184, DOI 10.1016/j.geomorph.2012.06.010. 10.1016/j.geomorph.2012.06.010Search in Google Scholar

[39] Su Z and Shi Y, 2002. Response of monsoonal temperate Glacier to global Warming Since the Little Ice Age. Quaternary International 97–98: 123–131, DOI 10.1016/S1040-6182(02)00057-5. http://dx.doi.org/10.1016/S1040-6182(02)00057-510.1016/S1040-6182(02)00057-5Search in Google Scholar

[40] Tang C, Zhu J, Qi X and Ding J, 2011. Landslides induced by the Wenchuan earthquake and the subsequent strong rainfall event: A case study in the Beichuan area of China. Engineering Geology 122(1–2): 22–33, DOI 10.1016/j.enggeo.2011.03.013. http://dx.doi.org/10.1016/j.enggeo.2011.03.01310.1016/j.enggeo.2011.03.013Search in Google Scholar

[41] Tang C, Van Asch TWJ, Chang M, Chen GQ, Zhao XH and Huang XC, 2012a. Catastrophic debris flows on 13 August 2010 in the Qing-ping area, southwestern China: The combined effects of a strong earthquake and subsequent rainstorms. Geomorphology 139–140: 559–576, DOI 10.1016/j.geomorph.2011.12.021. http://dx.doi.org/10.1016/j.geomorph.2011.12.02110.1016/j.geomorph.2011.12.021Search in Google Scholar

[42] Tang C, Zhu J, Chang M, Ding J and Qi X, 2012b. An empirical-statistical model for predicting debris-flow runout zones in the Wenchuan earthquake area. Quaternary International 250: 63–73, DOI 10.1016/j.quaint.2010.11.020. http://dx.doi.org/10.1016/j.quaint.2010.11.02010.1016/j.quaint.2010.11.020Search in Google Scholar

[43] Tie Y, 2013. Prediction of the run-out distance of the debris flow based on the velocity attenuation coefficient. Natural Hazards 65(3): 1589–1601, DOI 10.1007/s11069-012-0430-z. http://dx.doi.org/10.1007/s11069-012-0430-z10.1007/s11069-012-0430-zSearch in Google Scholar

[44] Yan Y and Yue C, 2004. Discussion on the characteristics and counter-measures for the geological hazard in Sichuan Province. The Chinese Journal of Geological Hazard and Control 15: 123–127, (in Chinese). Search in Google Scholar

[45] Zielonka T, Ciapała S, Malina P and Piątek G, 2009. Coarse woody derbis in mountain streams and their influence on geomorphology of channels in the Tatra Mts. Landform Analysis 10: 134–139. Search in Google Scholar

[46] Zielonka T and Dubaj N, 2010. A tree-ring reconstruction of geomorphologic disturbances in cliff forests in the Tatra Mts. Landform Analysis 11: 43–48. Search in Google Scholar

[47] Zielski A and Krąpiec M, 2004. Dendrochronologia. PWN, Warszawa. (in Polish). Search in Google Scholar

eISSN:
1897-1695
Język:
Angielski
Częstotliwość wydawania:
Volume Open
Dziedziny czasopisma:
Geosciences, other