Otwarty dostęp

Detection of O-glycosylated proteins from different Trichinella species muscle larvae total extracts


Zacytuj

[1] ALVAREZ ERRICO. D., MEDEIROS A., MIGUEZ M., CASARAVILLA C., MALGOR R., CARMONA C., NIETO A., OSINAGA E. (2001): O-glycosylation in Echinococcus granulosus: identification and characterization of the carcinoma-associated Tn antigen. Exp. Parasitol., 98: 100–109 http://dx.doi.org/10.1006/expr.2001.462010.1006/expr.2001.4620Search in Google Scholar

[2] Babál P., Pindak F. F, Wells D. J., Gardner W. A. (1994): Purification and characterization of a sialic acid-specific lectin from Tritrichomonas mobilensis. Biochem. J., 299: 341–346 Search in Google Scholar

[3] Bradford M. M. (1976): A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248–254 http://dx.doi.org/10.1016/0003-2697(76)90527-310.1016/0003-2697(76)90527-3Search in Google Scholar

[4] Brockhausen I. (1999) Pathways of O-glycan biosynthesis in cancer cells. Biochim. Biophys. Acta., 1473: 67–95 Search in Google Scholar

[5] Butcher B. A., Gagliardo L. F., ManWarren T., Appleton J. A. (2000): Larvae-induced plasma membrane wounds and glycoprotein deposition are insufficient for Trichinella spiralis invasion of epithelial cells. Mol. Biochem. Parasitol., 107: 207–218 http://dx.doi.org/10.1016/S0166-6851(00)00189-410.1016/S0166-6851(00)00189-4Search in Google Scholar

[6] Casaravilla C., Freire T., Malgor R., Medeiros A., Osinaga E., Carmona C. (2003): Mucin-type O-glycosylation in helminth parasites from major taxonomic groups: evidence for widespread distribution of the Tn-antigen (GalNAc-Ser/Thr) and identification of UDP-GalNAc: polypeptide N-acetyltransferase activity. J. Parasitol., 89: 701–714 http://dx.doi.org/10.1645/GE-311010.1645/GE-3110Search in Google Scholar

[7] Freire T., Casaravilla C., Carmona C., Osinaga E. (2003): Mucin-type O-glycosylation in Fasciolla hepatica: characterization of carcinoma-associated Tn and sialyl-Tn antigens and evaluation of GDP-GalNAc: polypeptide N-acetylgalactosaminyltransferase activity. Int. J. Parasitol., 33: 47–56 http://dx.doi.org/10.1016/S0020-7519(02)00231-X10.1016/S0020-7519(02)00231-XSearch in Google Scholar

[8] Granovsky M., Bielfeldt T., Peters S., Paulsen H., Meldal., Brockhausen J., Brockhausen I. (1994): UDPgalactose: glycoprotein-N-acetyl-D-galactosamine 3-β-D-galactosyltransferase activity synthesizing O-glycan core 1 is controlled by the amino acid sequence and glycosylation of glycopeptide substrates. Eur. J. Biochem., 221: 1039–1046 http://dx.doi.org/10.1111/j.1432-1033.1994.tb18822.x10.1111/j.1432-1033.1994.tb18822.x8181460Search in Google Scholar

[9] Gruden-Movsesijan A., Ilic N., Sofrinic-Milosavljevic L. (2002): Lectin-blot analyses of Trichinella spiralis muscle larvae excretory-secretory components. Paras. Res., 88: 1004–1007 http://dx.doi.org/10.1007/s00436-002-0606-710.1007/s00436-002-0606-712375167Search in Google Scholar

[10] Hooper L. V., Gordon J. I. (2001): Commensal host-bacterial relationship in the gut. Science., 292: 1115–1118 http://dx.doi.org/10.1126/science.105870910.1126/science.105870911352068Search in Google Scholar

[11] Knibbs R N, Goldstein I. J, Ratclife R. M, Shibuya N. (1991): Characterization of the carbohydrate binding specificity of the leukoagglutinin lectin from Maackia amurensis. Comparison with the other sialic acid-specific lectins. J. Biol. Chem., 266: 83–88 Search in Google Scholar

[12] Laemly U. K. (1970): Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227: 680–685 http://dx.doi.org/10.1038/227680a010.1038/227680a05432063Search in Google Scholar

[13] Levroney E. L., Aguilar H. C., Fulcher J. A., Kohatsu L., Pace K. E., Pang M., Gurney K. B., Baum L. G., Lee B. (2005): Novel innate functions for galectin-1: galectin-1 inhibits cell fusion by Nipah Virus envelope glycoprotein and augments dendritic cell secretion of proinflammatory cytokines. J. Immunol., 175: 413–420 10.4049/jimmunol.175.1.413442861315972675Search in Google Scholar

[14] Lotan R., Skutelsky, E., Danon, D., Saron, N. (1975): The purification, composition and specificity of the anti-T lectin from peanut (Arachis hypogaea). J. Biol. Chem., 250(85): 18–23 10.1016/S0021-9258(19)40790-4Search in Google Scholar

[15] Milcheva R., Petkova S., Dubinský P., Hurníková Z., Babál P. (2009): Glycosylation changes in different developmental stages of Trichinella. Biologia, 64(1): 180–186 http://dx.doi.org/10.2478/s11756-009-0015-910.2478/s11756-009-0015-9Search in Google Scholar

[16] Morelle W., Haslam S. M., Morris H. R., Dell A. (2000): Characterization of the N-linked glycans of adult Trichinella spiralis. Mol. Biochem. Parasitol., 109: 171–177 http://dx.doi.org/10.1016/S0166-6851(00)00241-310.1016/S0166-6851(00)00241-3Search in Google Scholar

[17] Pereira M. E., Kabat E. A., Lotan R., Sharon N. (1976): Immunochemical studies on the specificity of the peanut (Arachis hypogaea) agglutinin. Carboh. Res., 51: 107–118 http://dx.doi.org/10.1016/S0008-6215(00)84040-910.1016/S0008-6215(00)84040-9Search in Google Scholar

[18] Pozio E., LA Rosa G., Rossi P., Murrell K. D. (1992): Biological characterization of Trichinella isolates from various host species and geographical regions. J. Parasitol., 78: 647–653 http://dx.doi.org/10.2307/328353910.2307/3283539Search in Google Scholar

[19] Primakoff P., Myles D. G. (2002): Penetration, adhesion and fusion in mammalian sperm-egg interaction. Science, 296: 2183–2185 http://dx.doi.org/10.1126/science.107202910.1126/science.1072029Search in Google Scholar

[20] Reason A. J., Ellis L. A., Appleton J. A., Wisnewski N., Grieve R. B., McNeil M., Wassom D. L., Morris H. R., Dell A. (1994): Novel tyvelose-containing tri- and tetra-antennary N-glycans in the immunodominant antigens of the intracellular parasite Trichinella spiralis. Glycobiology, 4: 593–603 http://dx.doi.org/10.1093/glycob/4.5.59310.1093/glycob/4.5.593Search in Google Scholar

[21] Roth J. (1984): Cytochemical localization of terminal N-acetyl-G-galactosamine residues in cellular compartments of intestinal goblet cells: implications for the topology of O-glycosylation. J. Cell. Biol., 98: 399–406 http://dx.doi.org/10.1083/jcb.98.2.39910.1083/jcb.98.2.399Search in Google Scholar

[22] Schmidt, G. D., Roberts L. S. (1996): Foundations of parasitology, 5th edition. Wm. C. Brown, New York Search in Google Scholar

[23] Sugii S., Kabat E. A. (1982): Further immunochemical studies on the combining sites of Lotus tetragolbulus and Ulex europaeus I and II lectins. Carbohydr. Res., 99: 99–101 http://dx.doi.org/10.1016/S0008-6215(00)80982-910.1016/S0008-6215(00)80982-9Search in Google Scholar

[24] Tollefsen S. E, Kornfeld R. (1983) The B4 lectin from Vicia villosa seeds interacts with N-Acetylgalactosamine residues α-linked to serine or threonine residues in cell surface glycoproteins. J. Biol. Chem., 258: 5172–5176 10.1016/S0021-9258(18)32554-7Search in Google Scholar

[25] Towbin H., Stabelin T., Gordon J. (1979): Electrophoretic transfer of protein from polyacrylamide gels to nitrocellulose sheets. Proc. Natl. Acad. Sci. USA, 76: 4350–4354 http://dx.doi.org/10.1073/pnas.76.9.435010.1073/pnas.76.9.4350Search in Google Scholar

[26] Varki A., R. D. Cummings, J. Esko, H. Freeze, G. Hart, J. D. Marth O-Glycans-Less common O-glycan core subtypes. Structures common to different types of glycans-The A, B, and H blood group structures. In: Essentials of Glycobiology. A. R. D. Varki, J. Cummings, H. Esko, G. Freeze, J. D. Hart, J. Marth (Eds), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1999. p. 232–239 Search in Google Scholar

[27] Vassilatis D. K., Polvere R. I., Despommier D. D., Gold A. M., Van der Ploeg L. H. (1996): Developmental expression of a 43-kDa secreted glycoprotein from Trichinella spiralis. Mol. Biochem. Parasitol., 78:13–23 http://dx.doi.org/10.1016/S0166-6851(96)02595-910.1016/S0166-6851(96)02595-9Search in Google Scholar

[28] Watkins W. M. (1966): Blood-group substances. Science., 152: 172–181 http://dx.doi.org/10.1126/science.152.3719.17210.1126/science.152.3719.172Search in Google Scholar

[29] Wisnewski N., McMeil M., Grieve R. B., Wassom D. L. (1993): Characterisation of novel fucosyl- and tyvelosyl-containing glycoconjugates from Trichinella spiralis muscle stage larvae. Mol. Biochem. Parasitol., 61: 25–36 http://dx.doi.org/10.1016/0166-6851(93)90155-Q10.1016/0166-6851(93)90155-QSearch in Google Scholar

[30] Yang Z. Y., Duckers H. J., Sullivan N. J., Sanchez A., Nabel E. G., Nabel G. J. (2000): Identification of the Ebola virus glycoprotein as the main viral determinant of vascular cell cytotoxicity and injury. J. Nat. Med., 6: 886–889 http://dx.doi.org/10.1038/7864510.1038/78645Search in Google Scholar

[31] Yao C., Jasmer D. P. (1998): Nuclear antigens in Trichinella spiralis infected muscle cells: nuclear extraction, compartmentalization, and complex formation. Mol. Biochem. Parasitol., 92: 207–218 http://dx.doi.org/10.1016/S0166-6851(97)00199-010.1016/S0166-6851(97)00199-0Search in Google Scholar

[32] Zarlenga D. S., M., Chute B., Martin A., Kapel C. M. O. (1999): A multiplex PCR for unequivocal differentiation of all encapsulated and non-encapsulated genotypes of Trichinella. Int. J. Parasitol., 29: 1859–1867 http://dx.doi.org/10.1016/S0020-7519(99)00107-110.1016/S0020-7519(99)00107-1Search in Google Scholar

[33] Zheng B. L., L. H. Xiao, X. R. Wang, D. M. Li, Y. X. Lu, Y. Zhang, Q. B. Yan, M. X. Song. (2007): Study of the 49 kDa excretory-secretory protein gene of Trichinella nativa and Trichinella spiralis. Helminthologia, 43: 120–125 http://dx.doi.org/10.2478/s11687-007-0018-410.2478/s11687-007-0018-4Search in Google Scholar

eISSN:
1336-9083
ISSN:
0440-6605
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Nauki biologiczne, Zoologia, Ekologia, inne, Medycyna, Medycyna kliniczna, Mikrobiologia, wirusologia i epidemiologia