Otwarty dostęp

Peculiarities of Modelling of Vapour-Liquid Flows of Bubble Structure

  
04 maj 2025

Zacytuj
Pobierz okładkę

Debenedetti P. G. Metastable Liquids: Concepts and Principles. Princeton University Press, JSTOR, 1996. https://doi.org/10.2307/j.ctv10crfs5 Search in Google Scholar

Yin S., Wang N., Wang N. Nucleation and flashing inception in flashing flows: A review and model comparison. International Journal of Heat and Mass Transfer 2020:146:118898. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118898 Search in Google Scholar

Basok B., Davydenko B., Pavlenko A. M. Numerical network modeling of heat and moisture transfer through capillary-porous building materials. Materials 2021:14(8):1819. https://doi.org/10.3390/ma14081819 Search in Google Scholar

Pavlenko A., Koshlak H. Production of porous material with projected thermophysical characteristics. Metallurgical and Mining Industry 2015:7(1):123–127. Search in Google Scholar

Pavlenko A., Usenko B., Koshlak A. Thermal conductivity of the gas in small space. Metallurgical and Mining Industry 2014:6(2):20–24. Search in Google Scholar

Pavlenko A. M., Koshlak H. Intensification of Gas Hydrate Formation Processes by Renewal of Interfacial Area between Phases. Energies 2021:14(18):5912. https://doi.org/10.3390/en14185912 Search in Google Scholar

Pavlenko A., Szkarowski A., Janta-Lipiñska S. Research on burning of water black oil emulsions. Rocznik Ochrona Srodowiska 2014:16(1):376–385. Search in Google Scholar

Pavlenko A. M., Basok B. Kinetics of Water Evaporation from Emulsions. Heat Transfer Research 2005:36:425−430. https://doi.org/10.1615/HeatTransRes.v36.i5.100 Search in Google Scholar

Pavlenko A. M., Basok B. Regularities of Boiling-Up of Emulsified Liquids. Heat Transfer Research 2005:36:419−424. https://doi.org/10.1615/HeatTransRes.v36.i5.90 Search in Google Scholar

Pavlenko A. M., Basok B., Avramenko A. A. Heat Conduction of a Multi-Layer Disperse Particle of Emulsion. Heat Transfer Research 2005:36:55−61. https://doi.org/10.1615/HeatTransRes.v36.i12.80 Search in Google Scholar

Wang Y., Cheng K., Xu J., Jing W., Huang H., Qin J. Thermodynamic and mass analysis of a novel two-phase liquid metal MHD enhanced energy conversion system for space nuclear power source. Energy 2024:308:132860. https://doi.org/10.1016/j.energy.2024.132860 Search in Google Scholar

Domínguez-Lozoya J. C., Domínguez-Lozoya D. R., Cuevas S., Ávalos-Zúñiga R. A. MHD Generation for Sustainable Development, from Thermal to Wave Energy Conversion: Review. Sustainability 2024:16(22):10041. https://doi.org/10.3390/su162210041 Search in Google Scholar

Liu J., Pan J., Tang L., Su X. Modeling and analysis of steam-water two-phase flow distribution and wall temperature distribution in parallel heated pipes with different manifold types. Applied Thermal Engineering 2022:210:118387. https://doi.org/10.1016/j.applthermaleng.2022.118387 Search in Google Scholar

Su Y., Li X., Wu X. Two-phase flow instability characteristics of HTGR Once Through Steam Generators. Nuclear Engineering and Design 2023:415:112697. https://doi.org/10.1016/j.nucengdes.2023.112697 Search in Google Scholar

Zhiqiang Y., Li M., Cao B. A comprehensive review on microchannel heat sinks for electronics cooling. International Journal of Extreme Manufacturing 2024:6(2):022005. https://doi.org/10.1088/2631-7990/ad12d4 Search in Google Scholar

Shimizu I., Matsumoto M. Free Energy Evaluation of Cavity Formation in Metastable Liquid Based on Stochastic Thermodynamics. Entropy 2024:26(8):700. https://doi.org/10.3390/e26080700 Search in Google Scholar

Nath P. D., Rahman K. M., Al Bari Md. A. Thermal Hydraulic Analysis of a Nuclear Reactor Due to Loss of Coolant Accident with and Without Emergency Core Cooling System. Journal of Engineering Advancements 2020:1:(02):53–60. https://doi.org/10.38032/jea.2020.02.004 Search in Google Scholar

Zhu X., Song Z., Pan X., Mei Y., Wang X., Zhu J., Jiang J. Morphological characteristics of flashing jet throughout superheated liquid release. Journal of Loss Prevention in the Process Industries 2020:66:104163. https://doi.org/10.1016/j.jlp.2020.104163 Search in Google Scholar

Liu M., Huang Y., Wang Y., Zheng R., Fei J., Tian F., Gong H., Zhuo W. Experimental study of the depressurization phenomena of supercritical carbon dioxide system. Progress in Nuclear Energy 2024:168:104968. https://doi.org/10.1016/j.pnucene.2023.104968 Search in Google Scholar

Zhang K., Yang T. A., Liao H. Y., Xie X. F., Chen R. H., Tian W. X., Su G. H., Qiu S. Z. Development of fuel rod behavior analysis code and its application to supercritical CO2 cooled nuclear reactor. Annals of Nuclear Energy 2021:164:108618. https://doi.org/10.1016/j.anucene.2021.108618 Search in Google Scholar

Yang P., Ling W., Tian K., Zeng M., Wang Q. Flow distribution and heat transfer performance of two-phase flow in parallel flow heat exchange system. Energy 2023:270:126957. https://doi.org/10.1016/j.energy.2023.126957 Search in Google Scholar

Wu M., Zhang J., Gui N., Zou Q., Yang X., Tu J., Jiang S., Liu Z. Advances in the modeling of multiphase flows and their application in nuclear engineering – A review. Exp. Comput. Multiph. Flow 2024:6:287–352. https://doi.org/10.1007/s42757-024-0202-5 Search in Google Scholar

Liao Y., Lucas D. Computational modelling of flash boiling flows: A literature survey. International Journal of Heat and Mass Transfer 2017:111:246-265. https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.121 Search in Google Scholar

Ringstad K. E., Allouche Y., Gullo P., Ervik Å., Banasiak K., Hafner A. A detailed review on CO2 two-phase ejector flow modeling. Thermal Science and Engineering Progress 2020:20:100647. https://doi.org/10.1016/j.tsep.2020.100647 Search in Google Scholar

Stanislau S., Karri K., Schmidt D. P., Vuorinen V., Hyvönen J., Kaario O. Impact of modelling assumptions in cavitating flow of simplified injector. International Journal of Multiphase Flow 2024:177:104847. https://doi.org/10.1016/j.ijmultiphaseflow.2024.104847 Search in Google Scholar

Koukouvinis P., Naseri H., Gavaises M. Performance of turbulence and cavitation models in prediction of incipient and developed cavitation. Int. J. Engine Res. 2017:18:(4):333–350. https://doi.org/10.1177/1468087416658604 Search in Google Scholar

Yin S., Zhu M., Liu Q., Wang H. Two-phase modeling of micro-channel critical flows with inlet sub-cooling: A review and benchmark study. International Journal of Thermal Sciences 2022:179:107657. https://doi.org/10.1016/j.ijthermalsci.2022.107657 Search in Google Scholar

Chung S.-M., Seo Y.-S., Jeon G.-M., Kim J.-W., Park J.-C. Parameter Study of Boiling Model for CFD Simulation of Multiphase-Thermal Flow in a Pipe. J. Ocean Eng. Technol. 2021:35(1):50–58. https://doi.org/10.26748/KSOE.2020.071 Search in Google Scholar

Pothukuchi H., Kelm S., Patnaik B. S. V., Prasad B. V. S. S. S., Allelein H.-J. CFD modeling of critical heat flux in flow boiling: Validation and assessment of closure models. Applied Thermal Engineering 2019:150:651–665. https://doi.org/10.1016/j.applthermaleng.2019.01.030 Search in Google Scholar

Vadlamudi S. R. G., Nayak A. K. CFD simulation of Departure from Nucleate Boiling in vertical tubes under high pressure and high flow conditions. Nuclear Engineering and Design 2019:352:110150. https://doi.org/10.1016/j.nucengdes.2019.110150 Search in Google Scholar

Li J., Huang Y., Qiu Y., Wang S., Yang Q., Wang K., Zhu Y. Prediction of critical heat flux using different methods: A review from empirical correlations to the cutting-edge machine learning. International Communications in Heat and Mass Transfer 2025:160:108362. https://doi.org/10.1016/j.icheatmasstransfer.2024.108362 Search in Google Scholar

Guion A., Afkhami S., Zaleski S., Buongiorno J. Simulations of microlayer formation in nucleate boiling. Int. J. Heat Mass Transf. 2018:127:1271–1284. https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.041 Search in Google Scholar

Kim Y.-S. Critical flow maps using an extended Henry–Fauske model. Annals of Nuclear Energy 2015:75:516–520. https://doi.org/10.1016/j.anucene.2014.08.070 Search in Google Scholar

Xu H., Badea A. F., Cheng X. Development of a new full-range critical flow model based on non-homogeneous non-equilibrium model. Annals of Nuclear Energy 2021:158:108286. https://doi.org/10.1016/j.anucene.2021.108286 Search in Google Scholar

Liao H., Yang K., Liang Z., Hu H., Wang X., Wang H. A new paradigm in critical flow analysis: Combining Buckingham Pi theorem with neural network for improved predictions in microchannels. Chemical Engineering Science 2024:299:120483. https://doi.org/10.1016/j.ces.2024.120483 Search in Google Scholar

An Y. J., Yoo K. H., Na M. G., Kim Y.-S. Critical flow prediction using simplified cascade fuzzy neural networks. Annals of Nuclear Energy 2020:136:107047. https://doi.org/10.1016/j.anucene.2019.107047 Search in Google Scholar

He Y., Gu W., Wang D. Verification of Delayed Equilibrium Model for the R134a critical flow in a slit. Progress in Nuclear Energy 2024:174:105282. https://doi.org/10.1016/j.pnucene.2024.105282 Search in Google Scholar

De Lorenzo M., Lafon Ph., Seynhaeve J.-M., Bartosiewicz Y. Benchmark of Delayed Equilibrium Model (DEM) and classic two-phase critical flow models against experimental data. International Journal of Multiphase Flow 2017:92:112–130. https://doi.org/10.1016/j.ijmultiphaseflow.2017.03.004 Search in Google Scholar

He Y., Gu W., Wang D. Combination of two-fluid model and delayed equilibrium model for the critical flow in a slit. Progress in Nuclear Energy 2024:177:105406. https://doi.org/10.1016/j.pnucene.2024.105406 Search in Google Scholar

Xu H., Badea A. F., Cheng X. Analysis of two phase critical flow with a non-equilibrium model. Nuclear Engineering and Design 2021:372:110998. https://doi.org/10.1016/j.nucengdes.2020.110998 Search in Google Scholar

Basok B., Davydenko B., Koshlak H., Novikov V. Free Convection and Heat Transfer in Porous Ground Massif during Ground Heat Exchanger Operation. Materials 2022:15(14):4843. https://doi.org/10.3390/ma15144843 Search in Google Scholar

Jeongmin L., O'Neill L. E., Mudawar I. Computational prediction of key heat transfer mechanisms and hydrodynamic characteristics of critical heat flux (CHF) in subcooled vertical upflow boiling. International Journal of Heat and Mass Transfer 2020:161:120262. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120262 Search in Google Scholar

Darby R. On two-phase frozen and flashing flows in safety relief values: Recommended calculation method and the proper use of the discharge coefficient. Journal of Loss Prevention in the Process Industries 2004:17(4):255–259. https://doi.org/10.1016/j.jlp.2004.04.001 Search in Google Scholar

Marques-Riquelme E. F., Vandu C., Sluijterman A., Welch C. Discharge Coefficients for Thin Restriction Orifices Based on the Homogeneous Direct Integration Method. Industrial & Engineering Chemistry Research 2024:63(3):1578–1588. https://doi.org/10.1021/acs.iecr.3c02720 Search in Google Scholar

Kim Y.-S. Critical flow maps using an extended Henry–Fauske model. Annals of Nuclear Energy 2015:75:516–520. https://doi.org/10.1016/j.anucene.2014.08.070 Search in Google Scholar

Xu H., Badea A. F., Cheng X. Development of a new full-range critical flow model based on non-homogeneous non-equilibrium model. Annals of Nuclear Energy 2021:158:108286. https://doi.org/10.1016/j.anucene.2021.108286 Search in Google Scholar

Kim Y.-S. A proposed correlation for critical flow rate of water flow. Nuclear Engineering and Technology 2015:47(1):135–138. https://doi.org/10.1016/j.net.2014.11.004 Search in Google Scholar

Ye Ji An, Kwae Hwan Yoo, Man Gyun Na, Yeon-Sik Kim. Critical flow prediction using simplified cascade fuzzy neural networks. Annals of Nuclear Energy 2020:136:107047. https://doi.org/10.1016/j.anucene.2019.107047 Search in Google Scholar

Camarasa J., Crespo A., Montse V., Manel I., Jérôme B. A review of experimental studies on flow boiling instabilities mitigation through geometrical modifications. International Journal of Heat and Mass Transfer 2024:235:126014. https://doi.org/10.1016/j.ijheatmasstransfer.2024.126014 Search in Google Scholar

Binzhuo Xia, Fanting Xia, Kui Zhang, Ronghua Chen, Wenxi Tian, Suizheng Qiu. Experimental study of boiling critical heat flux with low mass flux under motion condition in a wetted perimeter equivalent rod. Applied Thermal Engineering 2025:258(Part B):124666. https://doi.org/10.1016/j.applthermaleng.2024.124666 Search in Google Scholar

Li F., Xia G., Li R. Visual boiling experimental research based on lateral liquid supply structure. International Journal of Heat and Fluid Flow 2025:111:109664 https://doi.org/10.1016/j.ijheatfluidflow.2024.109664 Search in Google Scholar

Kumar A., Abubakr B., Srivastava A. Non-intrusive experiments on coupled bubble dynamics and heat transfer during nucleate boiling under varying pressure conditions. Applied Thermal Engineering 2025:261:125102. https://doi.org/10.1016/j.applthermaleng.2024.125102 Search in Google Scholar

Yin S., Zhu M., Liu Q., Wang H. Two-phase modeling of micro-channel critical flows with inlet sub-cooling: A review and benchmark study. International Journal of Thermal Sciences 2022:179:107657. https://doi.org/10.1016/j.ijthermalsci.2022.107657 Search in Google Scholar

Long J., Yu B., Wang D., Shi J., Chen J. Calibration and validation of a modified non-equilibrium boiling model for transcritical flashing flow in two-phase R744 nozzles. International Journal of Refrigeration 2024:165:97–110. https://doi.org/10.1016/j.ijrefrig.2024.06.018 Search in Google Scholar

Xu H., Badea A. F., Cheng Xu. Analysis of two phase critical flow with a non-equilibrium model. Nuclear Engineering and Design 2021:372:110998. https://doi.org/10.1016/j.nucengdes.2020.110998 Search in Google Scholar

Xu H., Badea A. F., Cheng Xu. Development of a new full-range critical flow model based on non-homogeneous non-equilibrium model. Annals of Nuclear Energy 2021:158:108286. https://doi.org/10.1016/j.anucene.2021.108286 Search in Google Scholar

Giustini G. Modelling of Boiling Flows for Nuclear Thermal Hydraulics Applications – A Brief Review. Inventions 2020:5(3):47. https://doi.org/10.3390/inventions5030047 Search in Google Scholar

Bouré J. A., Fritte A. A., Giot M. M., Réocreux M. L. Highlights of two-phase critical flow: On the links between maximum flow rates, sonic velocities, propagation and transfer phenomena in single and two-phase flows. International Journal of Multiphase Flow 1976:3:(1)1–22. https://doi.org/10.1016/0301-9322(76)90030-6 Search in Google Scholar

Schmidt D. P., Gopalakrishnan S., Jasak H. Multi-dimensional simulation of thermal non-equilibrium channel flow. International Journal of Multiphase Flow 2010:36(4):284–292. https://doi.org/10.1016/j.ijmultiphaseflow.2009.11.012 Search in Google Scholar

Liao Y. CFD modelling of flashing flows for nuclear safety analysis: possibilities and challenges. Kerntechnik 2024:89(2):169–184. https://doi.org/10.1515/kern-2023-0090 Search in Google Scholar

Tae-Wook Ha, Jae Jun Jeong, Byong-Jo Yun. Improvement of the MARS subcooled boiling model for a vertical upward flow. Nuclear Engineering and Technology 2019:51(4):977–986. https://doi.org/10.1016/j.net.2019.01.001 Search in Google Scholar

Richter H. J. Separated two-phase flow model: application to critical two-phase flow. International Journal of Multiphase Flow 1983:9(5):511–530. https://doi.org/10.1016/0301-9322(83)90015-0 Search in Google Scholar

Liao Y., Lucas D. Computational modelling of flash boiling flows: A literature survey. International Journal of Heat and Mass Transfer 2017:111:246–265. https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.121 Search in Google Scholar

Emil R. K., Yosr A., Paride G., Åsmund E., Krzysztof B., Armin H. A detailed review on CO2 two-phase ejector flow modeling. Thermal Science and Engineering Progress 2020:20:100647. https://doi.org/10.1016/j.tsep.2020.100647 Search in Google Scholar

Xu H., Badea A. F., Cheng X. Analysis of two phase critical flow with a non-equilibrium model. Nuclear Engineering and Design 2021:372:110998. https://doi.org/10.1016/j.nucengdes.2020.110998 Search in Google Scholar

Ruspini L. C., Marcel C. P., Clausse A. Two-phase flow instabilities: A review. International Journal of Heat and Mass Transfer 2014:71:521–548. https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.047 Search in Google Scholar

O'Neill L. E., Mudawar I. Review of two-phase flow instabilities in macro- and micro-channel systems. International Journal of Heat and Mass Transfer 2020:157:119738. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119738 Search in Google Scholar

Du L., Hu W. An overview of heat transfer enhancement methods in microchannel heat sinks. Chemical Engineering Science 2023:280:119081. https://doi.org/10.1016/j.ces.2023.119081 Search in Google Scholar

Wang B., Hu Y., He Y., Rodionov N., Zhu J. Dynamic instabilities of flow boiling in micro-channels: A review. Applied Thermal Engineering 2022:214:118773. https://doi.org/10.1016/j.applthermaleng.2022.118773 Search in Google Scholar

Bodys J., Smolka J., Palacz M., Haida M., Banasiak K. Non-equilibrium approach for the simulation of CO2 expansion in two-phase ejector driven by subcritical motive pressure. International Journal of Refrigeration 2020:114:32–46. https://doi.org/10.1016/j.ijrefrig.2020.02.015 Search in Google Scholar

Li Y., Deng J. Numerical investigation on the performance of transcritical CO2 two-phase ejector with a novel non-equilibrium CFD model. Energy 2022:238(Part C):121995. https://doi.org/10.1016/j.energy.2021.121995 Search in Google Scholar

Xu H., Chen J., Ming P., Badea A., Cheng X. Study of the effect of virtual mass force on two-phase critical flow. Kerntechnik 2023:88(2):203–212. https://doi.org/10.1515/kern-2022-0072 Search in Google Scholar

Pavlenko A., Koshlak H., Usenko B. Heat and mass transfer in fluidized layer. Metallurgical and Mining Industry 2014:6(6):96–100. Search in Google Scholar

Pavlenko A., Koshlak H., Usenko B. The processes of heat and mass exchange in the vortex devices. Metallurgical and Mining Industry 2014:6(3):55–59. Search in Google Scholar

Weigand P., Oswald J., Bin Mohd Izahar M., Bikas G. A Novel Quasi-Dimensional Model for Transient Mixing Prediction in Two-Phase Multicomponent Sprays under Flash-Boiling Conditions. SAE Technical Paper 2024:01–2086. https://doi.org/10.4271/2024-01-2086 Search in Google Scholar

Shi S., Wang S., Pan X., Ma Y., Jiang J. Study on mechanism and law of liquid overheating and explosive boiling caused by leakage. CIESC Journal 2019:70(10):4089–4098. https://doi.org/10.11949/j.issn.0438-1157.20190617 Search in Google Scholar

Shang Q., Tian Zh., Wang S., Hua M., Pan X., Shi Sh., Jiang J. Experimental research on the two-phase explosive boiling mechanism of superheated liquid under different leakage conditions. Applied Thermal Engineering 2022:216:119080. https://doi.org/10.1016/j.applthermaleng.2022.119080 Search in Google Scholar

Thulukkanam K. Heat Exchanger Design Handbook (2nd ed.). CRC Press, 2013. https://doi.org/10.1201/b14877 Search in Google Scholar

Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Nauki biologiczne, Nauki biologiczne, inne