Otwarty dostęp

Acoustic Properties of Recycled Polyurethane Foam Waste and Polyvinyl Acetate Composites

,  oraz   
03 gru 2024

Zacytuj
Pobierz okładkę

Tao Y., Ren M., Zhang H., Peijs T. Recent progress in acoustic materials and noise control strategies – A review. Applied Materials Today 2021:24:101141. https://doi.org/10.1016/j.apmt.2021.101141 Search in Google Scholar

Venckus Ž., Grubliauskas R., Venslovas A. The Research on the Effectiveness of the Inclined Top Type of a Noise Barrier. Journal of Environmental Engineering and Landscape Management 2012:20:155–162. https://doi.org/10.3846/16486897.2011.634068 Search in Google Scholar

Cao L., Fu Q., Si Y., Ding B., Yu J. Porous materials for sound absorption. Composites Communications 2018:10:25–35. https://doi.org/10.1016/j.coco.2018.05.001 Search in Google Scholar

Martellotta F., Cannavale A., De Matteis V., Ayr U. Sustainable sound absorbers obtained from olive pruning wastes and chitosan binder. Applied Acoustics 2018:141:71–78. https://doi.org/10.1016/j.apacoust.2018.06.022 Search in Google Scholar

Ramam R. S., Pujari S., Chigilipalli B. K., Naik B. D., Kottala R. K., Kantumuchu V. C. Fabrication and optimization of acoustic properties of natural fiber reinforced composites. International Journal on Interactive Design and Manufacturing 2024:18:3681–3689. https://doi.org/10.1007/s12008-023-01496-1 Search in Google Scholar

Strazdas E., Januševičius T. Evaluation and Analysis of Sound Absorption across Various Types of Hemp Fibre. Environmental and Climate Technologies 2024:28(1):269–85. https://doi.org/10.2478/rtuect-2024-0022 Search in Google Scholar

Ruzickij R., Grubliauskas R. Sound Absorption: Dependence of Rubber Particles Impurities in Tyre Textile Fibre. Environmental and Climate Technologies 2022:26(1):331–40. https://doi.org/10.2478/rtuect-2022-0025 Search in Google Scholar

Ružickij R., Romagnoli F., Grubliauskas R. Waste Tyre Textile Fibre Composite Material: Acoustic Performance and Life Cycle Assessment. Sustainability (Switzerland) 2024:16(15):6281. https://doi.org/10.3390/su16156281 Search in Google Scholar

Astrauskas T., Grubliauskas R. Method to Recycle Paper Sludge Waste: Production of Panels for Sound Absorption Applications. Environmental and Climate Technologies 2020:24(3):364–372. https://doi.org/10.2478/rtuect-2020-0109 Search in Google Scholar

Naimušin A., Januševičius T. Development and Research of Recyclable Composite Metamaterial Structures Made of Plastic and Rubber Waste to Reduce Indoor Noise and Reverberation. Sustainability (Switzerland) 2023:15(2):1731. https://doi.org/10.3390/su15021731 Search in Google Scholar

Zhu S., Cheng D., Tang X. Recent advances on the fabrication and application of sound absorption coating-based textile composites. Textile Research Journal 2024:94(17–18):2044–2062. https://doi.org/10.1177/00405175241231827 Search in Google Scholar

Universidad de Burgos. REcovery of POLYurethane for reUSE in eco-efficient materials, 2020. Search in Google Scholar

Ko J., Zarei M., Lee S. G., Cho K. Single-Phase Recycling of Flexible Polyurethane Foam by Glycolysis and Oxyalkylation: Large-Scale Industrial Evaluation. ACS Sustainable Chemistry & Engineering 2023:11(27):10074–10082. https://doi.org/10.1021/acssuschemeng.3c01927 Search in Google Scholar

Haigh R. A Review and Thermal Conductivity Experimental Program of Mattress Waste Material as Insulation in Building and Construction Systems. Construction Materials 2024:4(2):401–424. https://doi.org/10.3390/constrmater4020022 Search in Google Scholar

Banik J., Chakraborty D., Rizwan M., Shaik A. H., Chandan M. R. Review on disposal, recycling and management of waste polyurethane foams: A way ahead. Waste Management & Research 2023:41(6):1063–1080. https://doi.org/10.1177/0734242X221146082 Search in Google Scholar

International Organization for Standardization [ISO]. Acoustics – Determination of acoustic properties in impedance tubes. Part 2: Two-microphone technique for normal sound absorption coefficient and normal surface impedance ISO 10534-2 2023. Search in Google Scholar

American Society for Testing and Materials. Standard Test Method for Normal Incidence Determination of Porous Material Acoustical Properties Based on the Transfer Matrix Method. ASTM E2611-19 2024. Search in Google Scholar

Nechita P., Năstac S. Foam-formed cellulose composite materials with potential applications in sound insulation. J Compos Mater 2018:52:747–754. https://doi.org/10.1177/0021998317714639 Search in Google Scholar

Gliscinska E., De Amezaga J. P., Michalak M., Krucinska I. Green sound-absorbing composite materials of various structure and profiling. Coatings 2021:11(4):407. https://doi.org/10.3390/coatings11040407 Search in Google Scholar

Zhang J., Shen Y., Jiang B., Li Y. Sound absorption characterization of natural materials and sandwich structure composites. Aerospace 2018:5(3):75. https://doi.org/10.3390/aerospace5030075 Search in Google Scholar

Li X., Peng Y., He Y., Zhang C., Zhang D., Liu Y. Research Progress on Sound Absorption of Electrospun Fibrous Composite Materials. Nanomaterials 2022:12(7):1123. https://doi.org/10.3390/nano12071123 Search in Google Scholar

Ružickij R., Kizinievič O., Grubliauskas R., Astrauskas T. Development of composite acoustic panels of waste tyre textile fibres and paper sludge. Sustainability (Switzerland) 2023:15(3):2799. https://doi.org/10.3390/su15032799 Search in Google Scholar

Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Nauki biologiczne, Nauki biologiczne, inne