This work is licensed under the Creative Commons Attribution 4.0 International License.
Tao Y., Ren M., Zhang H., Peijs T. Recent progress in acoustic materials and noise control strategies – A review. Applied Materials Today 2021:24:101141. https://doi.org/10.1016/j.apmt.2021.101141Search in Google Scholar
Venckus Ž., Grubliauskas R., Venslovas A. The Research on the Effectiveness of the Inclined Top Type of a Noise Barrier. Journal of Environmental Engineering and Landscape Management 2012:20:155–162. https://doi.org/10.3846/16486897.2011.634068Search in Google Scholar
Cao L., Fu Q., Si Y., Ding B., Yu J. Porous materials for sound absorption. Composites Communications 2018:10:25–35. https://doi.org/10.1016/j.coco.2018.05.001Search in Google Scholar
Martellotta F., Cannavale A., De Matteis V., Ayr U. Sustainable sound absorbers obtained from olive pruning wastes and chitosan binder. Applied Acoustics 2018:141:71–78. https://doi.org/10.1016/j.apacoust.2018.06.022Search in Google Scholar
Ramam R. S., Pujari S., Chigilipalli B. K., Naik B. D., Kottala R. K., Kantumuchu V. C. Fabrication and optimization of acoustic properties of natural fiber reinforced composites. International Journal on Interactive Design and Manufacturing 2024:18:3681–3689. https://doi.org/10.1007/s12008-023-01496-1Search in Google Scholar
Strazdas E., Januševičius T. Evaluation and Analysis of Sound Absorption across Various Types of Hemp Fibre. Environmental and Climate Technologies 2024:28(1):269–85. https://doi.org/10.2478/rtuect-2024-0022Search in Google Scholar
Ruzickij R., Grubliauskas R. Sound Absorption: Dependence of Rubber Particles Impurities in Tyre Textile Fibre. Environmental and Climate Technologies 2022:26(1):331–40. https://doi.org/10.2478/rtuect-2022-0025Search in Google Scholar
Ružickij R., Romagnoli F., Grubliauskas R. Waste Tyre Textile Fibre Composite Material: Acoustic Performance and Life Cycle Assessment. Sustainability (Switzerland) 2024:16(15):6281. https://doi.org/10.3390/su16156281Search in Google Scholar
Astrauskas T., Grubliauskas R. Method to Recycle Paper Sludge Waste: Production of Panels for Sound Absorption Applications. Environmental and Climate Technologies 2020:24(3):364–372. https://doi.org/10.2478/rtuect-2020-0109Search in Google Scholar
Naimušin A., Januševičius T. Development and Research of Recyclable Composite Metamaterial Structures Made of Plastic and Rubber Waste to Reduce Indoor Noise and Reverberation. Sustainability (Switzerland) 2023:15(2):1731. https://doi.org/10.3390/su15021731Search in Google Scholar
Zhu S., Cheng D., Tang X. Recent advances on the fabrication and application of sound absorption coating-based textile composites. Textile Research Journal 2024:94(17–18):2044–2062. https://doi.org/10.1177/00405175241231827Search in Google Scholar
Universidad de Burgos. REcovery of POLYurethane for reUSE in eco-efficient materials, 2020.Search in Google Scholar
Ko J., Zarei M., Lee S. G., Cho K. Single-Phase Recycling of Flexible Polyurethane Foam by Glycolysis and Oxyalkylation: Large-Scale Industrial Evaluation. ACS Sustainable Chemistry & Engineering 2023:11(27):10074–10082. https://doi.org/10.1021/acssuschemeng.3c01927Search in Google Scholar
Haigh R. A Review and Thermal Conductivity Experimental Program of Mattress Waste Material as Insulation in Building and Construction Systems. Construction Materials 2024:4(2):401–424. https://doi.org/10.3390/constrmater4020022Search in Google Scholar
Banik J., Chakraborty D., Rizwan M., Shaik A. H., Chandan M. R. Review on disposal, recycling and management of waste polyurethane foams: A way ahead. Waste Management & Research 2023:41(6):1063–1080. https://doi.org/10.1177/0734242X221146082Search in Google Scholar
International Organization for Standardization [ISO]. Acoustics – Determination of acoustic properties in impedance tubes. Part 2: Two-microphone technique for normal sound absorption coefficient and normal surface impedance ISO 10534-2 2023.Search in Google Scholar
American Society for Testing and Materials. Standard Test Method for Normal Incidence Determination of Porous Material Acoustical Properties Based on the Transfer Matrix Method. ASTM E2611-19 2024.Search in Google Scholar
Nechita P., Năstac S. Foam-formed cellulose composite materials with potential applications in sound insulation. J Compos Mater 2018:52:747–754. https://doi.org/10.1177/0021998317714639Search in Google Scholar
Gliscinska E., De Amezaga J. P., Michalak M., Krucinska I. Green sound-absorbing composite materials of various structure and profiling. Coatings 2021:11(4):407. https://doi.org/10.3390/coatings11040407Search in Google Scholar
Zhang J., Shen Y., Jiang B., Li Y. Sound absorption characterization of natural materials and sandwich structure composites. Aerospace 2018:5(3):75. https://doi.org/10.3390/aerospace5030075Search in Google Scholar
Li X., Peng Y., He Y., Zhang C., Zhang D., Liu Y. Research Progress on Sound Absorption of Electrospun Fibrous Composite Materials. Nanomaterials 2022:12(7):1123. https://doi.org/10.3390/nano12071123Search in Google Scholar
Ružickij R., Kizinievič O., Grubliauskas R., Astrauskas T. Development of composite acoustic panels of waste tyre textile fibres and paper sludge. Sustainability (Switzerland) 2023:15(3):2799. https://doi.org/10.3390/su15032799Search in Google Scholar