This work is licensed under the Creative Commons Attribution 4.0 International License.
Milkov A. V. Global estimates of hydrate-bound gas in marine sediments: how much is really out there? Earth-Science Reviews 2004:66(3–4):183–197. https://doi.org/10.1016/j.earscirev.2003.11.002Search in Google Scholar
Pavlenko A. M. Thermodynamic Features of the Intensive Formation of Hydrocarbon Hydrates. Energies 2020:13(13):3396. https://doi.org/10.3390/en13133396Search in Google Scholar
Pavlenko A., Koshlak H. A New Method for the Rapid Synthesis of Gas Hydrates for their Storage and Transportation. Environmental and Climate Technologies 2022:26(1):199–212. https://doi.org/10.2478/rtuect-2022-0016Search in Google Scholar
Pavlenko A. Application of Synthesized Hydrates in the National Economy. Environmental and Climate Technologies 2024:28(1):149–164. https://doi.org/10.2478/rtuect-2024-0013Search in Google Scholar
Boswell R., Hancock S., Yamamoto K., Collett T., Pratap M., Lee S. Natural Gas Hydrates: Status of Potential as an Energy Resource. Future Energy 3rd ed.; Improved Sustainable and Clean Options for our Planet; Elsevier: Amsterdam, The Netherlands, 2020:111–131. https://doi.org/10.1016/B978-0-08-102886-5.00006-2Search in Google Scholar
Veluswamy H. P, Kumar A., Kumar R., Linga P. An innovative approach to enhance methane hydrate formation kinetics with leucine for energy storage application. Applied Energy 2017:188:190–199. https://doi.org/10.1016/j.apenergy.2016.12.002Search in Google Scholar
Veluswamy H. P., Kumar A., Seo Y., Lee J. D., Linga P. A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates. Applied Energy 2018:216:262–285. https://doi.org/10.1016/j.apenergy.2018.02.059Search in Google Scholar
Yu H., Chen C., Wang F. Kinetic Promotional Effect of Methane Hydrate Formation in the Presence of Leucine. Energy & Fuels 2024:38(10):8641–8648. https://doi.org/10.1021/acs.energyfuels.4c00183Search in Google Scholar
Sharma D., Sowjanya Y., Chari V. D., Prasad P. Methane storage in mixed hydrates with tetrahydrofuran. Indian J Chem Technol. 2014:21:114–119.Search in Google Scholar
Delahaye A., Fournaison L., Marinhas S., Chatti I., Petitet J. P., Dalmazzone D., Fürst W. Effect of THF on equilibrium pressure and dissociation enthalpy of CO2 hydrates applied to secondary refrigeration. Ind. Eng. Chem. Res. 2006:45:391–397. https://doi.org/10.1021/ie050356pSearch in Google Scholar
Pavlenko A. M., Koshlak H. Intensification of Gas Hydrate Formation Processes by Renewal of Interfacial Area between Phases. Energies 2021:14(18):5912. https://doi.org/10.3390/en14185912Search in Google Scholar
Kipyoung K., Youtaek K., Hokeun K. Recent advances in natural gas hydrate. Carriers for gas transportation. Journal of Advanced Marine Engineering and Technology 2014:38(5):589–601. https://doi.org/10.5916/jkosme.2014.38.5.589Search in Google Scholar
Filarsky F., Schmuck C., Schultz H. J. Development of a Surface-Active Coating for Promoted Gas Hydrate Formation. Chem. Ing. Tech. 2019:91(12):85–91. https://doi.org/10.3390/molecules26123615Search in Google Scholar
Brown T. D., Taylor C. E., Bernardo M. P. Rapid Gas Hydrate Formation Processes: Will They Work? Energies 2010:3(6):1154–1175. https://doi.org/10.3390/en3061154Search in Google Scholar
Wang C., Li X., Liang S., Li Q., Pang W., Zhao B., Chen G., Sun C. Modeling on effective thermal conductivity of hydrate-bearing sediments considering the shape of sediment particle. Energy 2023:285:129338. https://doi.org/10.1016/j.energy.2023.129338Search in Google Scholar
Cheng C., Wang F., Tian Y., Wu X., Zheng J., Zhang J., Li L., Yang P.; Zhao J. Review and prospects of hydrate cold storage technology. Renew. Sustain. Energy Rev. 2020:117:109492. https://doi.org/10.1016/j.rser.2019.109492Search in Google Scholar
Zhao J., Lv Q., Li Y., Yang M., Liu W., Yao L., Wang S., Zhang Y., Song Y. In-situ visual observation for the formation and dissociation of methane hydrates in porous media by magnetic resonance imaging. Magn. Reson. Imaging 2015:33(4):485–490. https://doi.org/10.1016/j.mri.2014.12.010Search in Google Scholar
Pavlenko A., Basok B. I. Kinetics of Water Evaporation from Emulsions. Heat Transfer Research 2005:36(5):425–430. https://doi.org/10.1615/HeatTransRes.v36.i5.100Search in Google Scholar
Chen B., Sun H., Li K., Wang D., Yang, M. Experimental Investigation of Natural Gas Hydrate Production Characteristics via Novel Combination Modes of Depressurization with Water Flow Erosion. Fuel 2016:252:295–303. https://doi.org/10.1016/j.fuel.2019.04.120Search in Google Scholar
Xu H., Kong W., Yang F. Decomposition characteristics of natural gas hydrates in hydraulic lifting pipelines. Natural Gas Industry B 2019:6(2):159–167. https://doi.org/10.1016/j.ngib.2018.07.005Search in Google Scholar
Veluswamy H. P., Hong Q. W., Linga P. Morphology study of methane hydrate formation and dissociation in the presence of amino acid. Crystal Growth & Design 2016:16:5932–5945. https://doi.org/10.1021/acs.cgd.6b00997Search in Google Scholar
Gnanendran N., Amin R. Modelling hydrate formation kinetics of a hydrate promoter – water – natural gas system in a semibatch spray reactor. Chem. Eng. Sci. 2004:59(18):3849–3863. https://doi.org/10.1016/j.ces.2004.06.009Search in Google Scholar
Veluswamy H. P., Kumar S., Kumar R., Rangsunvigit P., Linga P. Enhanced clathrate hydrate formation kinetics at near ambient temperatures and moderate pressures: Application to natural gas storage. Fuel 2016:182:907–919. https://doi.org/10.1016/j.fuel.2016.05.068Search in Google Scholar
Sowjanya Y., Prasad P. S. R. Formation kinetics & phase stability of double hydrates of C4H8O and CO2/CH4: A comparison with pure systems. J. Nat. Gas Sci. Eng. 2014:18:58–63. https://doi.org/10.1016/j.jngse.2014.02.001Search in Google Scholar
Veluswamy H. P., Wong A. J. H., Babu P., Kumar R., Kulprathipanja S., Rangsunvigit P., Linga P. Rapid methane hydrate formation to develop a cost effective large scale energy storage system. Chem. Eng. J. 2016:290:161–173. https://doi.org/10.1016/j.cej.2016.01.026Search in Google Scholar
Ke W., Svartaas T. M., Chen D. A review of gas hydrate nucleation theories and growth models. Journal of Natural Gas Science and Engineering 2019:61:169–196. https://doi.org/10.1016/j.jngse.2018.10.021Search in Google Scholar
Pavlenko A. Self-preservation Effect of Gas Hydrates. Rocznik Ochrona Środowiska 2021:23:346–355. https://doi.org/10.54740/ros.2021.023Search in Google Scholar
Kiran B. S., Sowjanya K., Prasad P. S., Yoon J. H. Experimental investigations on tetrahydrofuran-methanewater system: Rapid methane gas storage in hydrates. Oil Gas Sci. Technol. Rev. IFP Energ. Nouv. 2019:74(12). https://doi.org/10.2516/ogst/2018092Search in Google Scholar
Stern L. A., Circone S., Kirby S. H., Durham W. B. Temperature, pressure, and compositional effects on anomalous or “self” preservation of gas hydrates. Canadian Journal of Physics 2003:81(1–2):271–283. https://doi.org/10.1139/p03-018Search in Google Scholar
Kumar A., Bhattacharjee G., Kulkarni B. D., Kumar R. Role of Surfactants in Promoting Gas Hydrate Formation. Industrial & Engineering Chemistry Research 2015:54(49):12217–12232. https://doi.org/10.1021/acs.iecr.5b03476Search in Google Scholar
Luan H., Liu M., Shan Q., Jiang Y., Yan P., Du X. Experimental Study on the Effect of Mixed Thermodynamic Inhibitors with Different Concentrations on Natural Gas Hydrate Synthesis. Energies 2024:17(9):2078. https://doi.org/10.3390/en17092078Search in Google Scholar
Wei Y., Maeda N. Dry Water as a Promoter for Gas Hydrate Formation: A Review. Molecules 2023:28(9):3731. https://doi.org/10.3390/molecules28093731Search in Google Scholar
Pavlenko A., Koshlak H., Usenko B. Heat and mass transfer in fluidized layer. Metallurgical and Mining Industry 2014:6:96–100.Search in Google Scholar
Lan X., Chen J., Li D., Zheng J., Linga P. Gas storage via clathrate hydrates: Advances, challenges, and prospects. Gas Science and Engineering 2024:129:205388. https://doi.org/10.1016/j.jgsce.2024.205388Search in Google Scholar
Gambelli A. M. Introduction to natural gas hydrate formation and applications, Advances in Natural Gas: Formation, Processing, and Applications. Natural Gas Hydrates 2024:3:3–25. https://doi.org/10.1016/B978-0-443-19219-7.00016-3Search in Google Scholar
Kim K., Truong-Lam H. S., Lee J. D., Sa J.-H. Facilitating clathrate hydrates with extremely rapid and high gas uptake for chemical-free carbon capture and methane storage. Energy 2023:270:126902. https://doi.org/10.1016/j.energy.2023.126902Search in Google Scholar
Sun L., Sun H., Yuan C., Zhang L., Yang L., Ling Z., Zhao J., Song Y. Enhanced clathrate hydrate formation at ambient temperatures (287.2 K) and near atmospheric pressure (0.1 MPa): Application to solidified natural gas technology. Chemical Engineering Journal 2023:454:3:140325. https://doi.org/10.1016/j.cej.2022.140325Search in Google Scholar
Gambelli A. M., Rossi F., Cotana F. Gas Hydrates as High-Efficiency Storage System: Perspectives and Potentialities. Energies 2022:15(22):8728. https://doi.org/10.3390/en15228728Search in Google Scholar
Xie J., Meng Q., Jiang A., Chen D., Wang Y., Jiao W., Liu R. Characterization of gas hydrate generation in SDS-R141b compounding static system. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2024:46(1): 6725–6742. https://doi.org/10.1080/15567036.2024.2354933Search in Google Scholar
Liu W., Wang L., Yang M., Song Y., Zhang L., Li Q., Chen Y., Experimental Study on the Methane Hydrate Formation from Ice Powders. Energy Procedia 2014:61:619–623. https://doi.org/10.1016/j.egypro.2014.11.1184Search in Google Scholar
Koshlak H. Synthesis of Zeolites from Coal Fly Ash Using Alkaline Fusion and Its Applications in Removing Heavy Metals. Materials 2023:16(13):4837. https://doi.org/10.3390/ma16134837Search in Google Scholar
Basok B., Davydenko B., Koshlak H., Novikov V. Free Convection and Heat Transfer in Porous Ground Massif during Ground Heat Exchanger Operation. Materials 2022:15(14):4843. https://doi.org/10.3390/ma15144843Search in Google Scholar
Englezos P. Phase equilibrium in canonical cubic structure I (sI) and II (sII) and hexagonal (sH) gas hydrate solid solutions. Fluid Phase Equilibria 2024:578:114005. https://doi.org/10.1016/j.fluid.2023.114005Search in Google Scholar
Javidani A. M., Abedi-Farizhendi S., Mohammadi A., Mohammadi A. H., Hassan H., Pahlavanzadeh H. Experimental study and kinetic modeling of R410a hydrate formation in presence of SDS, tween 20, and graphene oxide nanosheets with application in cold storage. Journal of Molecular Liquids 2020:304:112665. https://doi.org/10.1016/j.molliq.2020.112665Search in Google Scholar
Gambelli A. M., Rossi F. Thermodynamic and kinetic characterization of methane hydrate nucleation, growth and dissociation processes, according to the Labile Cluster Theory. Chem. Eng. J. 2021:425:130706. https://doi.org/10.1016/j.cej.2021.130706Search in Google Scholar
Pavlenko A. M., Basok B. I. Regularities of boiling-up of emulsified liquids. Heat Transfer Research 2005:36(5):419–424. https://doi.org/10.1615/HeatTransRes.v36.i5.90Search in Google Scholar
Pavlenko A., Koshlak H., Usenko B. The processes of heat and mass exchange in the vortex devices. Metallurgical and Mining Industry 2014:3:55–59.Search in Google Scholar