Otwarty dostęp

Study of the Influence of Temperature and Pressure on the Intensity of Gas Hydrate Formation

  
23 lis 2024

Zacytuj
Pobierz okładkę

Milkov A. V. Global estimates of hydrate-bound gas in marine sediments: how much is really out there? Earth-Science Reviews 2004:66(3–4):183–197. https://doi.org/10.1016/j.earscirev.2003.11.002 Search in Google Scholar

Pavlenko A. M. Thermodynamic Features of the Intensive Formation of Hydrocarbon Hydrates. Energies 2020:13(13):3396. https://doi.org/10.3390/en13133396 Search in Google Scholar

Pavlenko A., Koshlak H. A New Method for the Rapid Synthesis of Gas Hydrates for their Storage and Transportation. Environmental and Climate Technologies 2022:26(1):199–212. https://doi.org/10.2478/rtuect-2022-0016 Search in Google Scholar

Pavlenko A. Application of Synthesized Hydrates in the National Economy. Environmental and Climate Technologies 2024:28(1):149–164. https://doi.org/10.2478/rtuect-2024-0013 Search in Google Scholar

Boswell R., Hancock S., Yamamoto K., Collett T., Pratap M., Lee S. Natural Gas Hydrates: Status of Potential as an Energy Resource. Future Energy 3rd ed.; Improved Sustainable and Clean Options for our Planet; Elsevier: Amsterdam, The Netherlands, 2020:111–131. https://doi.org/10.1016/B978-0-08-102886-5.00006-2 Search in Google Scholar

Veluswamy H. P, Kumar A., Kumar R., Linga P. An innovative approach to enhance methane hydrate formation kinetics with leucine for energy storage application. Applied Energy 2017:188:190–199. https://doi.org/10.1016/j.apenergy.2016.12.002 Search in Google Scholar

Veluswamy H. P., Kumar A., Seo Y., Lee J. D., Linga P. A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates. Applied Energy 2018:216:262–285. https://doi.org/10.1016/j.apenergy.2018.02.059 Search in Google Scholar

Yu H., Chen C., Wang F. Kinetic Promotional Effect of Methane Hydrate Formation in the Presence of Leucine. Energy & Fuels 2024:38(10):8641–8648. https://doi.org/10.1021/acs.energyfuels.4c00183 Search in Google Scholar

Sharma D., Sowjanya Y., Chari V. D., Prasad P. Methane storage in mixed hydrates with tetrahydrofuran. Indian J Chem Technol. 2014:21:114–119. Search in Google Scholar

Delahaye A., Fournaison L., Marinhas S., Chatti I., Petitet J. P., Dalmazzone D., Fürst W. Effect of THF on equilibrium pressure and dissociation enthalpy of CO2 hydrates applied to secondary refrigeration. Ind. Eng. Chem. Res. 2006:45:391–397. https://doi.org/10.1021/ie050356p Search in Google Scholar

Pavlenko A. M., Koshlak H. Intensification of Gas Hydrate Formation Processes by Renewal of Interfacial Area between Phases. Energies 2021:14(18):5912. https://doi.org/10.3390/en14185912 Search in Google Scholar

Kipyoung K., Youtaek K., Hokeun K. Recent advances in natural gas hydrate. Carriers for gas transportation. Journal of Advanced Marine Engineering and Technology 2014:38(5):589–601. https://doi.org/10.5916/jkosme.2014.38.5.589 Search in Google Scholar

Filarsky F., Schmuck C., Schultz H. J. Development of a Surface-Active Coating for Promoted Gas Hydrate Formation. Chem. Ing. Tech. 2019:91(12):85–91. https://doi.org/10.3390/molecules26123615 Search in Google Scholar

Brown T. D., Taylor C. E., Bernardo M. P. Rapid Gas Hydrate Formation Processes: Will They Work? Energies 2010:3(6):1154–1175. https://doi.org/10.3390/en3061154 Search in Google Scholar

Wang C., Li X., Liang S., Li Q., Pang W., Zhao B., Chen G., Sun C. Modeling on effective thermal conductivity of hydrate-bearing sediments considering the shape of sediment particle. Energy 2023:285:129338. https://doi.org/10.1016/j.energy.2023.129338 Search in Google Scholar

Cheng C., Wang F., Tian Y., Wu X., Zheng J., Zhang J., Li L., Yang P.; Zhao J. Review and prospects of hydrate cold storage technology. Renew. Sustain. Energy Rev. 2020:117:109492. https://doi.org/10.1016/j.rser.2019.109492 Search in Google Scholar

Zhao J., Lv Q., Li Y., Yang M., Liu W., Yao L., Wang S., Zhang Y., Song Y. In-situ visual observation for the formation and dissociation of methane hydrates in porous media by magnetic resonance imaging. Magn. Reson. Imaging 2015:33(4):485–490. https://doi.org/10.1016/j.mri.2014.12.010 Search in Google Scholar

Pavlenko A., Basok B. I. Kinetics of Water Evaporation from Emulsions. Heat Transfer Research 2005:36(5):425–430. https://doi.org/10.1615/HeatTransRes.v36.i5.100 Search in Google Scholar

Chen B., Sun H., Li K., Wang D., Yang, M. Experimental Investigation of Natural Gas Hydrate Production Characteristics via Novel Combination Modes of Depressurization with Water Flow Erosion. Fuel 2016:252:295–303. https://doi.org/10.1016/j.fuel.2019.04.120 Search in Google Scholar

Xu H., Kong W., Yang F. Decomposition characteristics of natural gas hydrates in hydraulic lifting pipelines. Natural Gas Industry B 2019:6(2):159–167. https://doi.org/10.1016/j.ngib.2018.07.005 Search in Google Scholar

Veluswamy H. P., Hong Q. W., Linga P. Morphology study of methane hydrate formation and dissociation in the presence of amino acid. Crystal Growth & Design 2016:16:5932–5945. https://doi.org/10.1021/acs.cgd.6b00997 Search in Google Scholar

Gnanendran N., Amin R. Modelling hydrate formation kinetics of a hydrate promoter – water – natural gas system in a semibatch spray reactor. Chem. Eng. Sci. 2004:59(18):3849–3863. https://doi.org/10.1016/j.ces.2004.06.009 Search in Google Scholar

Veluswamy H. P., Kumar S., Kumar R., Rangsunvigit P., Linga P. Enhanced clathrate hydrate formation kinetics at near ambient temperatures and moderate pressures: Application to natural gas storage. Fuel 2016:182:907–919. https://doi.org/10.1016/j.fuel.2016.05.068 Search in Google Scholar

Sowjanya Y., Prasad P. S. R. Formation kinetics & phase stability of double hydrates of C4H8O and CO2/CH4: A comparison with pure systems. J. Nat. Gas Sci. Eng. 2014:18:58–63. https://doi.org/10.1016/j.jngse.2014.02.001 Search in Google Scholar

Veluswamy H. P., Wong A. J. H., Babu P., Kumar R., Kulprathipanja S., Rangsunvigit P., Linga P. Rapid methane hydrate formation to develop a cost effective large scale energy storage system. Chem. Eng. J. 2016:290:161–173. https://doi.org/10.1016/j.cej.2016.01.026 Search in Google Scholar

Ke W., Svartaas T. M., Chen D. A review of gas hydrate nucleation theories and growth models. Journal of Natural Gas Science and Engineering 2019:61:169–196. https://doi.org/10.1016/j.jngse.2018.10.021 Search in Google Scholar

Pavlenko A. Self-preservation Effect of Gas Hydrates. Rocznik Ochrona Środowiska 2021:23:346–355. https://doi.org/10.54740/ros.2021.023 Search in Google Scholar

Kiran B. S., Sowjanya K., Prasad P. S., Yoon J. H. Experimental investigations on tetrahydrofuran-methanewater system: Rapid methane gas storage in hydrates. Oil Gas Sci. Technol. Rev. IFP Energ. Nouv. 2019:74(12). https://doi.org/10.2516/ogst/2018092 Search in Google Scholar

Stern L. A., Circone S., Kirby S. H., Durham W. B. Temperature, pressure, and compositional effects on anomalous or “self” preservation of gas hydrates. Canadian Journal of Physics 2003:81(1–2):271–283. https://doi.org/10.1139/p03-018 Search in Google Scholar

Kumar A., Bhattacharjee G., Kulkarni B. D., Kumar R. Role of Surfactants in Promoting Gas Hydrate Formation. Industrial & Engineering Chemistry Research 2015:54(49):12217–12232. https://doi.org/10.1021/acs.iecr.5b03476 Search in Google Scholar

Luan H., Liu M., Shan Q., Jiang Y., Yan P., Du X. Experimental Study on the Effect of Mixed Thermodynamic Inhibitors with Different Concentrations on Natural Gas Hydrate Synthesis. Energies 2024:17(9):2078. https://doi.org/10.3390/en17092078 Search in Google Scholar

Wei Y., Maeda N. Dry Water as a Promoter for Gas Hydrate Formation: A Review. Molecules 2023:28(9):3731. https://doi.org/10.3390/molecules28093731 Search in Google Scholar

Pavlenko A., Koshlak H., Usenko B. Heat and mass transfer in fluidized layer. Metallurgical and Mining Industry 2014:6:96–100. Search in Google Scholar

Lan X., Chen J., Li D., Zheng J., Linga P. Gas storage via clathrate hydrates: Advances, challenges, and prospects. Gas Science and Engineering 2024:129:205388. https://doi.org/10.1016/j.jgsce.2024.205388 Search in Google Scholar

Gambelli A. M. Introduction to natural gas hydrate formation and applications, Advances in Natural Gas: Formation, Processing, and Applications. Natural Gas Hydrates 2024:3:3–25. https://doi.org/10.1016/B978-0-443-19219-7.00016-3 Search in Google Scholar

Kim K., Truong-Lam H. S., Lee J. D., Sa J.-H. Facilitating clathrate hydrates with extremely rapid and high gas uptake for chemical-free carbon capture and methane storage. Energy 2023:270:126902. https://doi.org/10.1016/j.energy.2023.126902 Search in Google Scholar

Sun L., Sun H., Yuan C., Zhang L., Yang L., Ling Z., Zhao J., Song Y. Enhanced clathrate hydrate formation at ambient temperatures (287.2 K) and near atmospheric pressure (0.1 MPa): Application to solidified natural gas technology. Chemical Engineering Journal 2023:454:3:140325. https://doi.org/10.1016/j.cej.2022.140325 Search in Google Scholar

Gambelli A. M., Rossi F., Cotana F. Gas Hydrates as High-Efficiency Storage System: Perspectives and Potentialities. Energies 2022:15(22):8728. https://doi.org/10.3390/en15228728 Search in Google Scholar

Xie J., Meng Q., Jiang A., Chen D., Wang Y., Jiao W., Liu R. Characterization of gas hydrate generation in SDS-R141b compounding static system. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2024:46(1): 6725–6742. https://doi.org/10.1080/15567036.2024.2354933 Search in Google Scholar

Liu W., Wang L., Yang M., Song Y., Zhang L., Li Q., Chen Y., Experimental Study on the Methane Hydrate Formation from Ice Powders. Energy Procedia 2014:61:619–623. https://doi.org/10.1016/j.egypro.2014.11.1184 Search in Google Scholar

Koshlak H. Synthesis of Zeolites from Coal Fly Ash Using Alkaline Fusion and Its Applications in Removing Heavy Metals. Materials 2023:16(13):4837. https://doi.org/10.3390/ma16134837 Search in Google Scholar

Basok B., Davydenko B., Koshlak H., Novikov V. Free Convection and Heat Transfer in Porous Ground Massif during Ground Heat Exchanger Operation. Materials 2022:15(14):4843. https://doi.org/10.3390/ma15144843 Search in Google Scholar

Englezos P. Phase equilibrium in canonical cubic structure I (sI) and II (sII) and hexagonal (sH) gas hydrate solid solutions. Fluid Phase Equilibria 2024:578:114005. https://doi.org/10.1016/j.fluid.2023.114005 Search in Google Scholar

Javidani A. M., Abedi-Farizhendi S., Mohammadi A., Mohammadi A. H., Hassan H., Pahlavanzadeh H. Experimental study and kinetic modeling of R410a hydrate formation in presence of SDS, tween 20, and graphene oxide nanosheets with application in cold storage. Journal of Molecular Liquids 2020:304:112665. https://doi.org/10.1016/j.molliq.2020.112665 Search in Google Scholar

Gambelli A. M., Rossi F. Thermodynamic and kinetic characterization of methane hydrate nucleation, growth and dissociation processes, according to the Labile Cluster Theory. Chem. Eng. J. 2021:425:130706. https://doi.org/10.1016/j.cej.2021.130706 Search in Google Scholar

Pavlenko A. M., Basok B. I. Regularities of boiling-up of emulsified liquids. Heat Transfer Research 2005:36(5):419–424. https://doi.org/10.1615/HeatTransRes.v36.i5.90 Search in Google Scholar

Pavlenko A., Koshlak H., Usenko B. The processes of heat and mass exchange in the vortex devices. Metallurgical and Mining Industry 2014:3:55–59. Search in Google Scholar

Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Nauki biologiczne, Nauki biologiczne, inne