Zacytuj

Safety and Security Analysis: Investigative Report by NASA on Proposed EPA Hydrogen-Powered Vehicle Fueling Station. Assessment and Standards Division Office of Transportation and Air Quality U.S. Environment Protection Agency, EPA420-R-04-016 October 2004. 45 p. Search in Google Scholar

Sato Y., Iwabuchi H., Groethe M., Merilo E., Chiba S. Experiments on hydrogen deflagration. Journal of Power Sources 2006:159(1):144–148. https://doi.org/10.1016/j.jpowsour.2006.04.062 Search in Google Scholar

Puttock G. S., Colenbrander G. W., Blackmore D. R., Maplin Sands experiments 1980: Dispersion results from continuous releases of refrigerated liquid propane, S. Hartwig (ed), Heavy Gas and Risk Assessment 1980:11:147–161. https://doi.org/10.1007/978-94-009-7151-6_9 Search in Google Scholar

Garcia, J., Baraldi, D., Gallego, E., Beccantini, A., Crespo A., Hansen O. R., Hoiset S., Kotchourko A., Makarov D., Migoya E., Molkov V., Voort M. M., Yanez J. An intercomparison exercise on the capabilities of CFD models to reproduce a large-scale hydrogen deflagration in open atmosphere. International Journal of Hydrogen Energy 2010:35(9):4435–4444. https://doi.org/10.1016/j.ijhydene.2010.02.011 Search in Google Scholar

Skob Y., Ugryumov M., Granovskiy E. Numerical Evaluation of Probability of Harmful Impact Caused by Toxic Spill Emergencies. Environmental and Climate Technologies 2019:23:1–14. https://doi.org/10.2478/rtuect-2019-0075 Search in Google Scholar

Sathiah P., Holler T., Kljenak I., Komen E. The role of CFD combustion modeling in hydrogen safety management – V: Validation for slow deflagrations in homogeneous hydrogen-air experiments. Nuclear Engineering and Design 2016:310:520–531. https://doi.org/10.1016/j.nucengdes.2016.06.030 Search in Google Scholar

Skob Y., Yakovlev S., Pichugina O., Kalinichenko M., Korobchynskyi K. Mathematical Modelling of Gas Admixtures Release, Dispersion and Explosion in Open Atmosphere. CEUR Workshop Proceedings 2023:3641:168–181. Search in Google Scholar

Skob Y., Yakovlev S., Korobchynskyi K., Kalinichenko M. Numerical Assessment of Terrain Relief Influence on Consequences for Humans Exposed to Gas Explosion Overpressure. Computation 2023:11(2):19. https://doi.org/10.3390/computation11020019 Search in Google Scholar

McQuaid J. Trials on dispersion of heavy gas clouds. Plant/Operations Progress 1985:4(1):58–61. https://doi.org/10.1002/prsb.720040112 Search in Google Scholar

Zatorska E. On the steady flow of a multicomponent, compressible, chemically reacting gas. Nonlinearity 2011:24:11. https://doi.org/10.1088/0951-7715/24/11/013 Search in Google Scholar

Gotaas Y. Heavy gas dispersion and environmental conditions as revealed by the Thorney Island experiments. Journal of Hazardous Materials 1985:11:399–408. https://doi.org/10.1016/0304-3894(85)85050-0 Search in Google Scholar

Skob Y., Yakovlev S., Pichugina O., Kalinichenko M., Korobchynskyi K., Hulianytskyi A. Numerical Evaluation of Wind Speed Influence on Accident Toxic Spill Consequences Scales. Environmental and Climate Technologies 2023:27:450–463. https://doi.org/10.2478/rtuect-2023-0033 Colenbrander G. W., Puttock J. S. Maplin Sands Experiments 1980: Interpretation and Modelling of Liquefied Gas Spills onto the Sea. In: Ooms, G., Tennekes, H. (eds) Atmospheric Dispersion of Heavy Gases and Small Particles 1984:277–295. https://doi.org/10.1007/978-3-642-82289-6_22 Search in Google Scholar

Men’shikov V., Skob Y., Ugryumov M. Solution of the three-dimensional turbomachinery blade row flow field problem with allowance for viscosity effects. Fluid Dynamics 1991:26(6):889–896. https://doi.org/10.1007/BF01056792 Search in Google Scholar

Tregillis I. L., Koskelo A. Analytic Solutions as a Tool for Verification and Validation of a Multiphysics Model. Journal of Verification, Validation and Uncertainty Quantification 2019:4(4):041004. https://doi.org/10.1115/1.4045747 Search in Google Scholar

Markiewicz T. A review of mathematical models for the atmospheric dispersion of heavy gases. Part I. A classification of models. Ecological Chemistry and Engineering S 2012:19(3):297–314. https://doi.org/10.2478/v10216-011-0022-y Search in Google Scholar

Walker E. L., Tanenbaum B. S. Investigation of Kinetic Models for Gas Mixtures. Physics of Fluids 1968:11:1951–1954. https://doi.org/10.1063/1.1692224 Search in Google Scholar

Mansha M., Saleemi A.R., Ghauri B. M. Kinetic models of natural gas combustion in an internal combustion engine. Journal of Natural Gas Chemistry 2010:19(1):6–14. https://doi.org/10.1016/S1003-9953(09)60024-4 Search in Google Scholar

Yu H., Zhang X. Molecular-kinetic study of multilayers gas-adsorption in a rarefied gas environment. Physics of Fluids 2022:34(12):123106. https://doi.org/10.1063/5.0124970 Search in Google Scholar

Rogulski M. Indoor PM10 concentration measurements using low-cost monitors in selected locations in Warsaw. Energy Procedia 2018:147:137–144. https://doi.org/10.1016/j.egypro.2018.07.043 Search in Google Scholar

Barisa A., Rosa M. Scenario analysis of CO2 emission reduction potential in road transport sector in Latvia. Energy Procedia 2018:147:86–95. https://doi.org/10.1016/j.egypro.2018.07.036 Search in Google Scholar

Puttock J. S., McFarlane K., Prothero A., Rees F. J., Blewitt D. N. Dispersion models and hydrogen fluoride predictions. Journal of Loss Prevention in the Process Industries 1991:4(1):16–28. https://doi.org/10.1016/0950-4230(91)80003-D Search in Google Scholar

Folch A., Costa A., Hankin R. K. S. twodee-2: A shallow layer model for dense gas dispersion on complex topography. Computers & Geosciences 2009:35(3):667–674. https://doi.org/10.1016/j.cageo.2007.12.017 Search in Google Scholar

Kopka P., Wawrzynczak A. Framework for stochastic identification of atmospheric contamination source in an urban area. Atmospheric Environment 2018:195:63–77. https://doi.org/10.1016/j.atmosenv.2018.09.035 Search in Google Scholar

Burns D. S., Rottmann S. D., Plitz A. B. L., Wiseman F. L., Chynwat V. A simplified chemistry module for atmospheric transport and dispersion models: Proof-of-concept using SCIPUFF. Atmospheric Environment 2012:56:212–221. https://doi.org/10.1016/j.atmosenv.2012.03.067 Search in Google Scholar

Merah A., Noureddine A. Reactive pollutants dispersion modeling in a street Canyon. International Journal of Applied Mechanics and Engineering 2019:24(1):91–103. https://doi.org/10.2478/ijame-2019-0006 Search in Google Scholar

Arvidson S., Davidson L., Peng S.-H. Interface methods for grey-area mitigation in turbulence-resolving hybrid RANS-LES. International Journal Heat and Fluid Flow 2018:73:236–257. https://doi.org/10.1016/j.ijheatfluidflow.2018.08.005 Search in Google Scholar

Lipatnikov A. N., Sabelnikov V. A., Poludnenko A. Y. Assessment of a transport equation for mean reaction rate using DNS data obtained from highly unsteady premixed turbulent flames. International Journal Heat and Mass Transfer 2019:134:398–404. https://doi.org/10.1016/j.ijheatmasstransfer.2019.01.043 Search in Google Scholar

Galeev A. D., Starovoitova E. V., Ponikarov S. I. Numerical simulation of the formation of a toxic cloud on outpouring ejection of liquefied chlorine to the atmosphere. Journal of Engineering Physics and Thermophysics 2013:86(1):219–228. https://doi.org/10.1007/s10891-013-0823-1 Search in Google Scholar

Snegirev A. Y., Frolov A. S. The large eddy simulation of a turbulent diffusion flame. High Temperature 2011:49:690–704. https://doi.org/10.1134/S0018151X11040201 Search in Google Scholar

Salamonowicz Z., Krauze A., Majder-Lopatka M., Dmochowska A., Piechota-Polanczyk A., Polanczyk A. Numerical Reconstruction of Hazardous Zones after the Release of Flammable Gases during Industrial Processes. Processes 2021:9(2):307. https://doi.org/10.3390/pr9020307 Search in Google Scholar

Sutthichaimethee P., Ariyasajjakorn D. Forecast of Carbon Dioxide Emissions from Energy Consumption in Industry Sectors in Thailand Env. and Climate Technologies 2018:22(1):107–117. https://doi.org/10.2478/rtuect-2018-0007 Search in Google Scholar

Slisane D., Blumberga D. Assessment of Roadside Particulate Emission Mitigation Possibilities Environmental and Climate Technologies 2013:12(1):4–9. https://doi.org/10.2478/rtuect-2013-0009 Search in Google Scholar

RD-03-26-2007. Metodicheskiye ukazaniya po otsenke posledstviy avariynykh vybrosov opasnykh veshchestv (Methodological guidelines for the assessment of the consequences of accidental releases of hazardous substances). Moscow, STC Industrial safety, 2008:27(6):122. (In Russian). Search in Google Scholar

Skob Y., Ugryumov M., Granovskiy E. Numerical assessment of hydrogen explosion consequences in a mine tunnel. International Journal of Hydrogen Energy 2021:46(23):12361–12371. https://doi.org/10.1016/j.ijhydene.2020.09.067 Search in Google Scholar

Skob Y., Ugryumov M., Dreval Y. Numerical Modelling of Gas Explosion Overpressure Mitigation Effects. Materials Science Forum 2020:1006:117–122. https://doi.org/10.4028/www.scientific.net/MSF.1006.117 Search in Google Scholar

Skob Y., Ugryumov M., Dreval Y., Artemiev S. Numerical Evaluation of Safety Wall Bending Strength during Hydrogen Explosion. Materials Science Forum 2021:1038:430–436. https://doi.org/10.4028/www.scientific.net/MSF.1038.430 Search in Google Scholar

Skob Y., Dreval Y., Vasilchenko A., Maiboroda R. Selection of Material and Thickness of the Protective Wall in the Conditions of a Hydrogen Explosion of Various Power. Key Engineering Materials 2023:952:121–129. https://doi.org/10.4028/p-ST1VeT Search in Google Scholar

eISSN:
2255-8837
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Life Sciences, other