Otwarty dostęp

Effects of Temperature, pH, and Agitation on Growth and Butanol Production of Clostridium acetobutylicum, Clostridium beijerinckii, and Clostridium saccharoperbutylacetonicum


Zacytuj

Nanda S., Golemi-Kotra D., McDermott J. C., Dalai A. K., Gökalp I., Kozinski J. A. Fermentative production of butanol: Perspectives on synthetic biology. N Biotechnol 2017:37:210–221. https://doi.org/10.1016/j.nbt.2017.02.006 Search in Google Scholar

Kolesinska B., Fraczyk J., Binczarski M., Modelska M., Berlowska J., Dziugan P., Antolak H., Kaminski Z. J., Witonska I. A., Kregiel D. Butanol synthesis routes for biofuel production: Trends and perspectives. Materials 2019:12(3). https://doi.org/10.3390/ma12030350 Search in Google Scholar

Visioli L. J., Enzweiler H., Kuhn R. C., Schwaab M., Mazutti M. A. Recent advances on biobutanol production. Sustainable Chemical Processes 2014:2:Art15. https://doi.org/10.1186/2043-7129-2-15 Search in Google Scholar

Buehler E. A., Mesbah A. Kinetic study of acetone-butanol-ethanol fermentation in continuous culture. PLoS One 2016:11(8):e0158243. https://doi.org/10.1371/journal.pone.0158243 Search in Google Scholar

Durre P. New insights and novel developments in clostridial acetone/butanol/isopropanol fermentation. Appl Microbiol Biotechnol 1998:49:639–648. https://doi.org/10.1007/s002530051226 Search in Google Scholar

Qureshi N., Lin X., Liu S., Saha B. C., Mariano A. P., Polaina J., Ezeji T. C., Friedl A., Maddox I. S., Klasson K. T., Dien B. S., Singh V. Global View of Biofuel Butanol and Economics of Its Production by Fermentation from Sweet Sorghum Bagasse, Food Waste, and Yellow Top Presscake: Application of Novel Technologies. Fermentation 2020:6(2). https://doi.org/10.3390/FERMENTATION6020058 Search in Google Scholar

German Collection of Microorganisms and Cell Cultures GmbH: Details n.d. [Online]. [Accessed: 10.07.2023]. Available: https://www.dsmz.de/collection/catalogue/details/culture/DSM-14923 Search in Google Scholar

Carrié M., Velly H., Ben-Chaabane F., Gabelle J. C. Modeling fixed bed bioreactors for isopropanol and butanol production using Clostridium beijerinckii DSM 6423 immobilized on polyurethane foams. Biochem Eng J 2022:180:108355. https://doi.org/10.1016/J.BEJ.2022.108355 Search in Google Scholar

Survase S. A., Jurgens G., Van Heiningen A., Granström T. Continuous production of isopropanol and butanol using Clostridium beijerinckii DSM 6423. Appl Microbiol Biotechnol 2011:91:1305–1313. https://doi.org/10.1007/s00253-011-3322-3 Search in Google Scholar

Cebreiros F., Ferrari M. D., Lareo C. Cellulose hydrolysis and IBE fermentation of eucalyptus sawdust for enhanced biobutanol production by Clostridium beijerinckii DSM 6423. Ind Crops Prod 2019:134:50–61. https://doi.org/10.1016/j.indcrop.2019.03.059 Search in Google Scholar

German Collection of Microorganisms and Cell Cultures GmbH: Details n.d. [Online]. [Accessed: 10.07.2023]. Available: https://www.dsmz.de/collection/catalogue/details/culture/DSM-6423 Search in Google Scholar

Clostridium acetobutylicum 2291, W | Type strain | DSM 792, ATCC 824, VKM B-1787, CCUG 42182 C, LMG 5710, CECT 508, IFO 13948, JCM 1419, BCRC 10639, CCUG 42182, IAM 19013, KCTC 1790, NBRC 13948, NCIMB 8052, NRRL B-527 | BacDiveID:2529 n.d. [Online]. [Accessed: 10.07.2023]. Available: https://bacdive.dsmz.de/strain/2529 Search in Google Scholar

Zetty-Arenas A. M., Alves R. F., Portela C. A. F., Mariano A. P., Basso T. O., Tovar L. P., Filho R. M., Freitas S. Towards enhanced n-butanol production from sugarcane bagasse hemicellulosic hydrolysate: Strain screening, and the effects of sugar concentration and butanol tolerance. Biomass Bioenergy 2019:126:190–198. https://doi.org/10.1016/j.biombioe.2019.05.011 Search in Google Scholar

Lütke-Eversloh T., Bahl H. Metabolic engineering of Clostridium acetobutylicum: Recent advances to improve butanol production. Curr Opin Biotechnol 2011:22(5):634–647. https://doi.org/10.1016/j.copbio.2011.01.011 Search in Google Scholar

Vees C. A., Neuendorf C. S., Pflügl S. Towards continuous industrial bioprocessing with solventogenic and acetogenic clostridia: challenges, progress and perspectives. J Ind Microbiol Biotechnol 2020:47(9-10):753–787. https://doi.org/10.1007/s10295-020-02296-2 Search in Google Scholar

Jiang M., Chen J. N., He A. Y., Wu H., Kong X. P., Liu J. L., Lin C.-y., Chen Wu-F., Chen P. Enhanced acetone/butanol/ethanol production by Clostridium beijerinckii IB4 using pH control strategy. Process Biochemistry 2014:49(8):1238–1244. https://doi.org/10.1016/j.procbio.2014.04.017 Search in Google Scholar

Alam S., Stevens D., Bajpai R. Production of butyric acid by batch fermentation of cheese whey with Clostridium beijerinckii. Journal of Industrial Microbiology 1988:2:359–364. Search in Google Scholar

Drahokoupil M., Patáková P. Production of butyric acid at constant pH by a solventogenic strain of Clostridium beijerinckii. Czech Journal of Food Sciences 2020:38(3):185–191. https://doi.org/10.17221/95/2020-CJFS Search in Google Scholar

Al-Shorgani N. K. N., Shukor H., Abdeshahian P., Mohd Nazir M. Y., Kalil M. S., Hamid A. A., Yusoff W. M. W. Process optimization of butanol production by Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564) using palm oil mill effluent in acetone-butanol-ethanol fermentation. Biocatal Agric Biotechnol 2015:4(2):244–249. https://doi.org/10.1016/j.bcab.2015.02.004 Search in Google Scholar

Singh V., Singh H., Das D. Optimization of the medium composition for the improvement of hydrogen and butanol production using Clostridium saccharoperbutylacetonicum DSM 14923. Int J Hydrogen Energy 2019:44(49):26905–19. https://doi.org/10.1016/j.ijhydene.2019.08.125 Search in Google Scholar

Ennis B. M., Maddox S. The Effect of pH and Lactose Concentration on Solvent Production from Whey Permeate Using Clostridium acetobutylicum. Biotechnol Bioeng 1987:29(3)329–334. https://doi.org/10.1002/bit.260290306 Search in Google Scholar

Al-Shorgani N. K. N., Kalil M. S., Yusoff W. M. W., Hamid A. A. Impact of pH and butyric acid on butanol production during batch fermentation using a new local isolate of Clostridium acetobutylicum YM1. Saudi J Biol Sci 2018:25(2):339–348. https://doi.org/10.1016/j.sjbs.2017.03.020 Search in Google Scholar

Iyyappan J., Bharathiraja B., Varjani S., PraveenKumar R., Muthu Kumar S. Anaerobic biobutanol production from black strap molasses using Clostridium acetobutylicum MTCC11274: Media engineering and kinetic analysis. Bioresour Technol 2022:346:126405. https://doi.org/10.1016/J.BIORTECH.2021.126405 Search in Google Scholar

Shaterzadeh M. J., Ataei S. A. The effects of temperature, initial pH, and glucose concentration on biohydrogen production from Clostridium acetobutylicum. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 2017:39(11):1118–1123. https://doi.org/10.1080/15567036.2017.1297875 Search in Google Scholar

Wang Y., Blaschek H. P. Optimization of butanol production from tropical maize stalk juice by fermentation with Clostridium beijerinckii NCIMB 8052. Bioresour Technol 2011:102(21):9985–9990. https://doi.org/10.1016/j.biortech.2011.08.038 Search in Google Scholar

Qureshi N., Singh V., Liu S., Ezeji T. C., Saha B. C., Cotta M. A. Process integration for simultaneous saccharification, fermentation, and recovery (SSFR): Production of butanol from corn stover using Clostridium beijerinckii P260. Bioresour Technol 2014:154:222–228. https://doi.org/10.1016/j.biortech.2013.11.080 Search in Google Scholar

Al-Shorgani N. K. N., Kalil M. S., Yusoff W. M. W. Fermentation of sago starch to biobutanol in a batch culture using Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564). Ann Microbiol 2012:62:1059–1070. https://doi.org/10.1007/s13213-011-0347-x Search in Google Scholar

Wang P., Chen Y. M., Wang Y., Lee Y. Y., Zong W., Taylor S., McDonald T., Wang Y. Towards comprehensive lignocellulosic biomass utilization for bioenergy production: Efficient biobutanol production from acetic acid pretreated switchgrass with Clostridium saccharoperbutylacetonicum N1-4. Applied Energy 2019:236:551–559. https://doi.org/10.1016/j.apenergy.2018.12.011 Search in Google Scholar

Wang P., Zhang J., Feng J., Wang S., Guo L., Wang Y., Lee Y. Y., Taylor S., McDonald T., Wang Y. Enhancement of acid re-assimilation and biosolvent production in Clostridium saccharoperbutylacetonicum through metabolic engineering for efficient biofuel production from lignocellulosic biomass. Bioresource Technology 2019:281:217–225. https://doi.org/10.1016/j.biortech.2019.02.096 Search in Google Scholar

Yao D, Dong S, Wang P, Chen T, Wang J, Yue Z-B, et al. Robustness of Clostridium saccharoperbutylacetonicum for Acetone-Butanol-Ethanol production: effects of lignocellulosic sugars and inhibitors Running title: Effects of sugars and inhibitors on ABE fermentation. Fuel 2017:208:549–557. https://doi.org/10.1016/j.fuel.2017.07.004 Search in Google Scholar

Welsh F. W., Veliky I. A. The metabolism of lactose by Clostridium acetobutylicum. Biotechnology Letters1986:8:43–46. https://doi.org/10.1007/BF01044400 Search in Google Scholar

Yerushalmi L., Volesky B. Importance of Agitation in Acetone-Butanol Fermentation. Biotechnol Bioeng 1985:27(6):852–860. https://doi.org/10.1002/bit.260270615 Search in Google Scholar

Ranjan A., Mayank R., Moholkar V. S. Process optimization for butanol production from developed rice straw hydrolysate using Clostridium acetobutylicum MTCC 481 strain. Biomass Convers Biorefin 2013:3:143–55. https://doi.org/10.1007/s13399-012-0062-2 Search in Google Scholar

Doremus M. G., Linden J. C., Moreiras A. R. Agitation and Pressure Effects on Acetone-Butanol Fermentation. Biotechnol Bioeng 1985:27(6):852–860. https://doi.org/10.1002/bit.260270615 Search in Google Scholar

Raita S., Spalvins K., Blumberga D. Prospect on agro-industrial residues usage for biobutanol production. Agronomy Research 2021:19(S1):877–895. https://doi.org/10.15159/AR.21.084 Search in Google Scholar

eISSN:
2255-8837
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Life Sciences, other