Zacytuj

Preston F., Lehne J. Making Concrete Change Innovation in Low-Carbon Cement and Concrete. The Royal Institute of International Affairs, 2018. Search in Google Scholar

Miller N. The Industry Creating a Third of the World’s Waste – BBC Future. [Online]. [Accessed: 22.03.2022]. Available: https://www.bbc.com/future/article/20211215-the-buildings-made-from-rubbish Search in Google Scholar

Cohen N., Robbins P. Construction and Demolition Waste. [Online]. [Accessed: 22.03.2022]. Available: https://environment.ec.europa.eu/topics/waste-and-recycling/construction-and-demolition-waste_en Search in Google Scholar

Bakde S., Suryawanshi P., Murkute S., Bharti R., Kumar Shaw S., Ali Khan H. Impacts of Fibre and Wastage Material on the Sustainable Concrete: A Comprehensive Review. Mater Today Proc 2023. https://doi.org/10.1016/j.matpr.2023.02.447 Search in Google Scholar

Vitale P., Napolitano R., Colella F., Menna C., Asprone D. Cement-Matrix Composites Using Cfrp Waste: A Circular Economy Perspective Using Industrial Symbiosis. Materials 2021:14(6):1484. https://doi.org/10.3390/ma14061484 Search in Google Scholar

Pavlů T. The Utilization of Recycled Materials for Concrete and Cement Production- A Review. IOP Conf Ser Mater Sci Eng 2018:442:012014. https://doi.org/10.1088/1757-899X/442/1/012014 Search in Google Scholar

Fanijo E. O., Kolawole J. T., Babafemi A. J., Liu J. A Comprehensive Review on the Use of Recycled Concrete Aggregate for Pavement Construction: Properties, Performance, and Sustainability. Cleaner Materials 2023:9:100199. https://doi.org/10.1016/j.clema.2023.100199 Search in Google Scholar

BigRentz Inc 23 Construction Waste Statistics. [Online]. [Accessed: 14.06.2022]. Available: https://www.bigrentz.com/blog/construction-waste-statistics Search in Google Scholar

Argalis P. P., Sinka M., Bajare D. Recycling of Cement–Wood Board Production Waste into a Low-Strength Cementitious Binder. Recycling 2022:7(5):76. https://doi.org/10.3390/recycling7050076 Search in Google Scholar

Tang Z., Li W., Tam V. W. Y., Xue C. Advanced Progress in Recycling Municipal and Construction Solid Wastes for Manufacturing Sustainable Construction Materials. Resources, Conservation and Recycling X 2020:6:100036. https://doi.org/10.1016/j.rcrx.2020.100036 Search in Google Scholar

Knoeri C., Sanyé-Mengual E., Althaus H. J. Comparative LCA of Recycled and Conventional Concrete for Structural Applications. Int. Journal of Life Cycle Assessment 2013:18:909–918. https://doi.org/10.1007/s11367-012-0544-2 Bru K., Touzé S., Bourgeois F., Lippiatt N., Ménard Y. Assessment of a Microwave-Assisted Recycling Process for the Recovery of High-Quality Aggregates from Concrete Waste. International Journal of Material Processing 2014:126:90–98. https://doi.org/10.1016/j.minpro.2013.11.009 Search in Google Scholar

Bhashya V., Ramesh G., Bharatkumar B. H., Iyer N. R. Improving the Performance of Recylced Aggregate Concrete Using Heat Treated Recycled Aggregates. 4th International fib Congress 2014: Improving Performance of Concrete Structures, FIB 2014. Search in Google Scholar

Argalis P. P., Sinka M., Bajare D. A Preliminary Study of Mechanical Treatments’ Effect on the Reactivation of Hydrated Cement Paste. J Phys Conf Ser 2023:2423. https://doi.org/10.1088/1742-6596/2423/1/012008 Search in Google Scholar

Thomas B. S., Kumar S., Arel H. S. Sustainable Concrete Containing Palm Oil Fuel Ash as a Supplementary Cementitious Material – A Review. Renewable and Sustainable Energy Reviews 2017:80:550–561. https://doi.org/10.1016/j.rser.2017.05.128 Search in Google Scholar

Karthik C., Nagaraju A. An Experimental Study on Recycled Aggregate Concrete with Partial Replacement of Cement With Flyash and Alccofine. IOP Conf Ser Earth Environ Sci 2023:1130:012012. https://doi.org/10.1088/1755-1315/1130/1/012012 Search in Google Scholar

Lake D. J. Making Cement from Demolished Concrete: A Potential Circular Economy Through Geopolymer Chemistry. Ecocities Now 2020:107–117. https://doi.org/10.1007/978-3-030-58399-6_7 Search in Google Scholar

Jackowski M., Małek M. A Multi-Site Study of a New Cement Composite Brick with Partial Cement Substitutes and Waste Materials. SSRN Electronic Journal 2022. https://doi.org/10.2139/ssrn.4124968 Search in Google Scholar

Ohemeng E. A., Ekolu S. O. A Review on the Reactivation of Hardened Cement Paste and Treatment of Recycled Aggregates. Magazine of Concrete Research 2020:72:526–539 https://doi.org/10.1680/jmacr.18.00452 Search in Google Scholar

Bourbia S., Kazeoui H., Belarbi R. A Review on Recent Research on Bio-Based Building Materials and Their Applications. Mater Renew Sustain Energy 2023:12:117–139. https://doi.org/10.1007/s40243-023-00234-7 Search in Google Scholar

Yadav M., Agarwal M. Biobased Building Materials for Sustainable Future: An Overview. Mater Today Proc 2021:43:2895–2902. https://doi.org/10.1016/j.matpr.2021.01.165 Search in Google Scholar

Mohamad A., Khadraoui F., Chateigner D., Boutouil M. Influence of Porous Structure of Non-Autoclaved Bio-Based Foamed Concrete on Mechanical Strength. Buildings 2023:13(9):2261. https://doi.org/10.3390/buildings13092261 Search in Google Scholar

Pokharel A., Falua K. J., Babaei-Ghazvini A., Acharya B. Biobased Polymer Composites: A Review. Journal of Composites Science 2022:6:255. https://doi.org/10.3390/jcs6090255 Search in Google Scholar

Bennai F. Study of Coupled Heat and Humidity Transfer Mechanisms in Porous Construction Materials in Unsaturated Regime (Étude Des Mécanismes de Transferts Couplés de Chaleur et d’ Humidité Dans Les Matériaux Poreux de Construction En Régime Insaturé). Université de A. Mira de Bejaia. 2018. (In French). Search in Google Scholar

Othmen I. Study of insulation materials compatible with tufa stone: application to the rehabilitation of old and/or historic buildings. (Étude des matériaux d’isolation compatibles avec la pierre de tuffeau: application à la réhabilitation du bâti ancien et/ou historique). Université de Nantes. 2015. (in French) Search in Google Scholar

Yang Y., Haurie L., Wang D.-Y. Bio-Based Materials for Fire-Retardant Application in Construction Products: A Review. J Therm Anal Calorim 2022:147:6563–6582. https://doi.org/10.1007/s10973-021-11009-5 Search in Google Scholar

12390-13, E. Determination of Secant Modulus of Elasticity in Compression. BSI Standards Publication 2013. Search in Google Scholar

Sahmenko G., Sinka M., Namsone E., Korjakins A., Bajare D. Sustainable Wall Solutions Using Foam Concrete and Hemp Composites. Environmental and Climate Technologies 2021:25(1):917–930. https://doi.org/10.2478/rtuect-2021-0069 Search in Google Scholar

Bumanis G., Bajare D. PCM Modified Gypsum Hempcrete with Increased Heat Capacity for Nearly Zero Energy Buildings. Environmental and Climate Technologies 2022:26(1):524–534. https://doi.org/10.2478/rtuect-2022-0040 Search in Google Scholar

Bumanis G., Irbe I., Sinka M., Bajare D. Biodeterioration of Sustainable Hemp Shive Biocomposite Based on Gypsum and Phosphogypsum. Journal of Natural Fibers 2022:19(15):10550–10563. https://doi.org/10.1080/15440478.2021.1997871 Search in Google Scholar

Sinka M., Korjakins A., Sahmenko G. Hemp Concrete Composite Panel, Its Environmental Impact 2019. Presented at XXVIII Scientific and Technological Conference of Latvian Concrete Association, November 6, 2019, Riga, Latvia. Search in Google Scholar

Walker R., Pavia S., Mitchell R. Mechanical Properties and Durability of Hemp-Lime Concretes. Constr Build Mater 2014:61:340–348. https://doi.org/10.1016/j.conbuildmat.2014.02.065 Search in Google Scholar

Dıker B., Yazicioğlu F. A Research on Straw Bale and Traditional External Wall Systems: Energy and Cost-Efficiency Analysis. Journal of the Faculty of Architecture 2020:17:95–103, https://doi.org/10.5505/itujfa.2019.65882 Search in Google Scholar

Mehravar M., Veshkini A., Veiseh S., Fayaz R. Physical Properties of Straw Bale and Its Effect on Building Energy Conservation and Carbon Emissions in Different Climatic Regions of Iran. Energy Build 2022:254:111559. https://doi.org/10.1016/j.enbuild.2021.111559 Search in Google Scholar

Segovia F., Blanchet P., Auclair N., Essoua G. G. E. Thermo-Mechanical Properties of a Wood Fiber Insulation Board Using a Bio-Based Adhesive as a Binder. Buildings 2020:10(9):1–15. https://doi.org/10.3390/buildings10090152 Search in Google Scholar

Khabbazi A., Garoum M., Terhmina O. Experimental Study of Thermal and Mechanical Properties of a New Insulating Material Based on Cork and Cement Mortar. [Online]. [Accessed: 21.03.2023]. Available: https://www.researchgate.net/publication/279591550_Experimental_study_of_thermal_and_mechanical_properties_of_a_new_insulating_material_based_on_cork_and_cement_mortar Search in Google Scholar

eISSN:
2255-8837
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Life Sciences, other