Otwarty dostęp

Analysing Metal Melting Methods for Green Transformation of Scrap Metal: Case Study of Latvia using MCDA and SWOT Analysis


Zacytuj

Nicholas S., Basirat S. New From Old: The Global Potential for More Scrap Steel Recycling. Lakewood: IEEFA, 2021. Search in Google Scholar

Statista. World crude steel production from 2012 to 2021 [Online]. [Accessed 18.02.2023]. Available: https://www.statista.com/statistics/267264/world-crude-steel-production Search in Google Scholar

de Abreu G., et al. Iron and Steel Technology Roadmap. Towards more sustainable steelmaking. Paris: IEA, 2020. Search in Google Scholar

IIGCC. Initiative supported by investors representing USD $55 trillion sets decarbonisation expectations for steel industry in line with IEA 2050 scenario 2021 [Online]. [Accessed 10.02.2023]. Available: https://www.iigcc.org/news/initiative-supported-by-investors-representing-usd-55-trillion-set-decarbonisation-expectations-for-steel-industry-in-line-with-iea-2050-scenario Search in Google Scholar

Morecamble Metals. Defining all the Different Types of Scrap Metal [Online]/ [Accessed 12.02.2023]. Available: https://www.morecambemetals.co.uk/defining-home-and-prompt-scrap-industrial-scrap-and-obsolete-scrap Search in Google Scholar

Kolbeinsen L. The beginning and the end of the aluminium value chain. Mater. Tech. 2020:108(5–6):1–22. https://doi.org/10.1051/MATTECH/2021008 Search in Google Scholar

Ruth M. Steel Production and Energy. Encycl. Energy 2004:695–706. https://doi.org/10.1016/B0-12-176480-X/00371-5 Search in Google Scholar

Raabe D., et al. Making sustainable aluminum by recycling scrap: The science of “dirty” alloys. Prog. Mater. Sci. 2022:128:100947. https://doi.org/10.1016/J.PMATSCI.2022.100947 Search in Google Scholar

Allwood J. M., Cullen J. M., Milford R. L. Options for achieving a 50% cut in industrial carbon emissions by 2050. Environ. Sci. Technol. 2010:44(6):1888–1894. https://doi.org/10.1021/es902909k Search in Google Scholar

Brooks L., et al. Ferrous and non-ferrous recycling: Challenges and potential technology solutions. Waste Manag. 2019:85:519–528. https://doi.org/10.1016/J.WASMAN.2018.12.043 Search in Google Scholar

Fraser Valley Scrap Metal Recycling. Reducing greenhouse gas emissions one scrap metal at a time | Get fair prices for your metal items. 2022 [Online]. [Accessed 11.02.2023]. Available: https://fvmr.ca/reducing-greenhouse-gasemissions-one-scrap-metal-at-a-time-get-fair-prices-for-your-metal-items Search in Google Scholar

RMG. Environmental Benefits of Recycling Scrap Metal. 2021 [Online]. [Accessed 02.02.2023]. Available: https://roanemetals.com/scrap-metal-recycling-environmental-benefits Search in Google Scholar

World Steel Association. Scrap use in the steel industry. Brussels: WSA, 2021. Search in Google Scholar

EuRIC AISBL. Metal Recycling Factsheet. Brussels: EuRIC aisbl, 2015. Search in Google Scholar

Sahoo M., et al. Role of Scrap Recycling for CO2 Emission Reduction in Steel Plant: A Model Based Approach. Steel Res. Int. 2019:90(8):1900034. https://doi.org/10.1002/SRIN.201900034 Search in Google Scholar

Basson E. 2020 World Steel in Figures. Brussels: WSA, 2020. Search in Google Scholar

Eurostat. Generation of metal waste in Latvia. Statistics. 2022 [Online]. [Accessed 18.02.2023]. Available: https://ec.europa.eu/eurostat/databrowser/view/ENV_WASGEN__custom_5001386/default/table?lang=en Search in Google Scholar

European Union. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives. Off. J. Eur. Union 2008:L312/3. Search in Google Scholar

VARAM. Atkritumu apsaimniekošanas valsts plānam 2021.–2028.gadam. 3. Pielikums (Waste management plant State plan for 2021-2028. Annex 3). Riga: VARAM, 2021. (in Latvian) Search in Google Scholar

Cabinet of Ministers. Regulations Regarding Separate Collection of Waste, Preparation of Waste for Re-use, Recycling of Waste, and Material Recovery. Latv. Vestnieks 2021:209. Search in Google Scholar

Tolmets. Kur nodot metalluznus [Online]. [Accessed 18.02.2023]. Available: https://tolmets.lv/pienemsanas-punkti.html Search in Google Scholar

Official Statistics Portal. In 2021, industrial production output increased by 6.5 %. Riga: OSP, 2022. Search in Google Scholar

MASOC. Home page – MASOC. [Online]. [Accessed 12.02.2023]. Available: https://www.masoc.lv/en Search in Google Scholar

de Paula do Rosário J. G., et al. A Review on Multi-criteria Decision Analysis in the Life Cycle Assessment of Electricity Generation Systems. World Sustain. Ser. 2020:575–590. https://doi.org/10.1007/978-3-030-26759-9_33 Search in Google Scholar

Cusano G., et al. Best Available Techniques (BAT) Reference Document for the Non-Ferrous Metals Industries. Luxembourg: EC, 2017. Search in Google Scholar

Burrows A., et al. Isasmelt at Mufulira-Increased Flexibility on the Zambian Copperbelt. Met. Mater. Process. a Clean Environ. 2014:1:217–226. Search in Google Scholar

Babich A., Senk D. Recent developments in blast furnace iron-making technology. Iron Ore: Mineralogy, Processing and Environmental Sustainability. Cambridge: Woodhead Publishing, 2015:505–547. Search in Google Scholar

StrikoWestofen. The StrikoMelter Plus+ Energy Saving Furnace. 2022 [Online]. [Accessed 19.02.2023]. Available: https://www.strikowestofen.com/en-gb/strikomelter-plus-energy-saving-furnace Search in Google Scholar

White D., et al. Reverberatory and Stack Furnaces. ASH Handbook. Almere: ASM International, 2008:15:160–169. Search in Google Scholar

Kulczycka J., et al. Environmental Impacts of Energy-Efficient Pyrometallurgical Copper Smelting Technologies. J. Ind. Ecol. 2016:20(2):304–316. https://doi.org/10.1111/JIEC.12369 Search in Google Scholar

Echterhof T. Review on the Use of Alternative Carbon Sources in EAF Steelmaking. Metals 2021:11(2):222. https://doi.org/10.3390/MET11020222 Search in Google Scholar

Demus T., et al. Investigations on the Use of Biogenic Residues as a Substitute For Fossil Coal in The EAF Steelmaking Process. Proc. of the 10 th Eur. Electr. Steelmak. Conf. 2012:10. Search in Google Scholar

Brewster R. Report on the Environmental Benefits of Recycling. Brussels: BIR, 2008. Search in Google Scholar

Sohn H. Y., Olivas-Martinez M. Lead and Zinc Production. Treatise on Process Metallurgy. Elsevier, 2014:3:671–700. Search in Google Scholar

Total Materia Article. Ausmelt Smelting: Part Three. 2022 [Online]. [Accessed 19.02.2023]. Available: https://www.totalmateria.com/page.aspx?ID=CheckArticle&site=ktn&NM=270 Search in Google Scholar

Alexander C., et al. Comparison of environmental performance of modern copper smelting technologies. Clean. Environ. Syst. 2021:3:100052. https://doi.org/10.1016/J.CESYS.2021.100052 Search in Google Scholar

Arthur P., Edwards J. ISASMELT - A Quiet Revolution. Proc. EMC 2003, 2003. Search in Google Scholar

BOLIDEN. Metals for the sustainable society. Narva: Boliden, 2018. Search in Google Scholar

Americam Iron and Steel Institute. Electric Arc Furnace Steelmaking. Washington: AISI, 2008. Search in Google Scholar

Norgate T. E., Jahanshahi S., Rankin W. J. Alternative Routes to Stainless Steel-A Life Cycle Approach. Proc. Tenth Int. Ferroalloys Congr. 2004:1. Search in Google Scholar

Carpenter A. CO2 abatement in the iron and steel industry. London: IEA Clean Coal Centre, 2012. Search in Google Scholar

Moya J. A., et al. Energy Efficiency and GHG Emissions: Prospective Scenarios for the Aluminium Industry. Luxembourg: Publications Office of the European Union, 2015. https://doi.org/10.2790/9500 Search in Google Scholar

Kongoli F., Arthur P. S. ISASMELT - 6,000,000 TPA and Rising. Sohn Int. Symp. Adv. Process. Met. Mater. 2006:1–16. Search in Google Scholar

Siegmund A. Modern Applied Technologies for Primary Lead Smelting at the Beginning of the 21 Century. Mater. Sci. 2013. Search in Google Scholar

Simonov Yu.-N., Belova S.-A., Simonov M.-Yu. Metallurgicheskie technologii (Metallurgical technologies). Perm: PNIPU, 2012. (in Russian) Search in Google Scholar

Pan D., et al. A review on lead slag generation, characteristics, and utilization. Resour. Conserv. Recycl. 2019:146:140–155. https://doi.org/10.1016/J.RESCONREC.2019.03.036 Search in Google Scholar

Hoffman C., Van Hoey M., Zeumer B. Decarbonization challenge for steel. New York: McKinsey&Company, 2020. Search in Google Scholar

Williamson IR. Industrial Application of Temperature Measurement. 2022 [Online]. [Accessed 19.02.2023]. Available: https://www.williamsonir.com/blog/industrial-application-of-temperature-measurement/ Search in Google Scholar

Pérez K., et al. Environmental, economic and technological factors affecting Chilean copper smelters – A critical review. J. Mater. Res. Technol. 2021:15:213–225. https://doi.org/10.1016/J.JMRT.2021.08.007 Search in Google Scholar

Zhou H., et al. Mineralogical and morphological factors affecting the separation of copper and arsenic in flash copper smelting slag flotation beneficiation process. J. Hazard. Mater. 2021:401:123293. https://doi.org/10.1016/J.JHAZMAT.2020.123293 Search in Google Scholar

Morris A. E., Wadsley M. Metal Extraction: Phase Stability Diagrams. Encycl. Mater. Sci. Technol. 2001:5362–5377. https://doi.org/10.1016/B0-08-043152-6/00936-0 Search in Google Scholar

Hayati M., Mahdevari S., Barani K. An improved MADM-based SWOT analysis for strategic planning in dimension stones industry. Resour. Policy 2023:80:103287. https://doi.org/10.1016/J.RESOURPOL.2022.103287 Search in Google Scholar

VVD. AB atļaujas (AB Permitions) [Online]. [Accessed 13.01.2023]. Available: https://registri.vvd.gov.lv/izsniegtasatlaujas-un-licences/a-un-b-atlaujas/ Search in Google Scholar

Dock J., Kienberger T. Techno-economic case study on Oxyfuel technology implementation in EAF steel mills – Concepts for waste heat recovery and carbon dioxide utilization. Clean. Eng. Technol. 2022:9:100525. https://doi.org/10.1016/J.CLET.2022.100525 Search in Google Scholar

Andonovski G., Tomažic S. Comparison of data-based models for prediction and optimization of energy consumption in electric arc furnace (EAF). IFAC-PapersOnLine 2022:55(20):373–378. https://doi.org/10.1016/J.IFACOL.2022.09.123 Search in Google Scholar

Kim J., et al. Optimized rotary hearth furnace utilization with blast furnace and electric arc furnace: Techno-economics, CO2 reduction. Fuel Process. Technol. 2022:237:107450. https://doi.org/10.1016/J.FUPROC.2022.107450 Search in Google Scholar

Ceramic Industry. Understanding the benefits of Electric Arc Furnace technology. Washington: CI, 2015. Search in Google Scholar

Tian B., et al. Effect of hot metal charging on economic and environmental indices of electric arc furnace steelmaking in China. J. Clean. Prod. 2022:379:134597. https://doi.org/10.1016/J.JCLEPRO.2022.134597 Search in Google Scholar

Xia Z., et al. The CO2 reduction potential for the oxygen blast furnace with CO2 capture and storage under hydrogen-enriched conditions. Int. J. Greenh. Gas Control 2022:121:103793. https://doi.org/10.1016/J.IJGGC.2022.103793 Search in Google Scholar

Suopajärvi H., Pongrácz E., Fabritius T. Bioreducer use in Finnish blast furnace ironmaking – Analysis of CO2 emission reduction potential and mitigation cost. Appl. Energy 2014:124:82–93. https://doi.org/10.1016/J.APENERGY.2014.03.008 Search in Google Scholar

Total Materia Article. The Queneau-Schuhmann-Lurgi (QSL) Process. 2015 [Online]. [Accessed 20.02.2023]. Available: https://www.totalmateria.com/page.aspx?ID=CheckArticle&site=ktn&NM=363 Search in Google Scholar

Schlesinger M. E., et al. Bath Matte Smelting: Ausmelt/Isasmelt and Mitsubishi. Extractive Metallurgy of Copper. Elsevier, 2011:155–178. Search in Google Scholar

Metso Outotec. Decarbonization of the Ausmelt process. 2023 [Online]. [Accessed 19.02.2023]. Available: https://www.mogroup.com/insights/blog/mining-and-metals/decarbonization-of-the-ausmelt-process Search in Google Scholar

George J. P., Pramod V. R. SWOT Analysis of Steel Re Rolling Mills (A comparative study of international brand with a local brand). Int. J. Sci. Res. Publ. 2013:3(12). Search in Google Scholar

Iskanius P., Muhos M. Drivers towards agility in the Finnish metal industry. Proc. Int. Conf. Ind. Eng. Syst. Manag. 2007. Search in Google Scholar

ECORYS SCS Group. FWC Sector Competitiveness Studies - Competitiveness of the EU Metalworking and Metal Articles Industries. Rotterdam: ECORYS SCS Group, 2009. Search in Google Scholar

LVGMC. Pollutant Release and Transfer Register [Online]. [Accessed 13.01.2023]. Available: https://prtr.lvgmc.lv/ Search in Google Scholar

eISSN:
2255-8837
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Life Sciences, other