Otwarty dostęp

Revolutionizing the Building Envelope: A Comprehensive Scientific Review of Innovative Technologies for Reduced Emissions


Zacytuj

IPCC. Climate Change 2021: The Physical Science Basis. 2021. [Online]. [Accessed: 10.03.2023]. Available: https://www.ipcc.ch/report/ar6/wg1/ Search in Google Scholar

European commission. The European Green Deal. 2019. [Online]. [Accessed: 15.03.2023]. Available: https://eurlex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52019DC0640&from=EN Search in Google Scholar

Pakere I., Prodanuks T., Kamenders A., Veidenbergs I., Holler S., Villere A., Blumberga D. Ranking EU climate and energy policies. Env. Climate Technologies 2021:25(1):367–381. https://doi.org/10.2478/rtuect-2021-0027 Search in Google Scholar

United nations. Global Status report for Buildings and Construction 2021. UN [Online]. [Accessed: 15.02.2023]. Available: https://globalabc.org/resources/publications/2021-global-status-report-buildings-and-construction Search in Google Scholar

BPIE. Towards a decarbonised eu building stock: expert views on the issues and challenges facing the transition Factsheet. 2018. [Online]. [Accessed: 15.03.2023]. Available: https://bpie.eu/wp-content/uploads/2018/10/NZE2050-factsheet_03.pdf Search in Google Scholar

Miezis M., Zvaigznitis K., Stancioff N., Soeftestad L. Climate change and buildings energy efficiency – the key role of residents. Environmental and Climate Technologies 2016:17(1):30–43. https://doi.org/10.1515/rtuect-2016-0004 Search in Google Scholar

Shuja D., Gardezi S. S. S., Idrees M. R. Prospects of Transforming Conventional Commercial Buildings to Net Zero Energy Building-Balancing the Economic Aspects with Energy Patterns. Environmental and Climate Technologies 2021:25(1):990–1002. https://doi.org/10.2478/rtuect-2021-0075. Search in Google Scholar

Albatayneh A., Alterman D., Page A., Moghtaderi B. The Significance of Building Design for the Climate. Environmental and Climate Technologies 2018:22(1):165–178. https://doi.org/10.2478/rtuect-2018-0011 Search in Google Scholar

Hayter S. J., Kandt A. Renewable Energy Applications for Existing Buildings Preprint Renewable Energy Applications for Existing Buildings. 2011. [Online]. Accessed: 15.03.2023]. Available: https://www.nrel.gov/docs/fy11osti/52172.pdf Search in Google Scholar

Hestnes A. G. Building Integration Of Solar Energy Systems. Solar Energy 1999:67(4–6):181–187. https://doi.org/10.1016/S0038-092X(00)00065-7 Search in Google Scholar

Pakere I., Blumberga D. Solar Energy in Low Temperature District Heating. Environmental and Climate Technologies 2019:23(3):147–158. https://doi.org/10.2478/rtuect-2019-0085 Search in Google Scholar

Abdou N., Mghouchi Y. El., Hamdaoui S., Mhamed M. Optimal Building Envelope Design and Renewable Energy Systems Size for Net-zero Energy Building in Tetouan (Morocco). Presented at 9th International Renewable and Sustainable Energy Conference (IRSEC). 2021. https://doi.org/10.1109/IRSEC53969.2021.9741188 Search in Google Scholar

Zsembinszki G., Fernandez A. g., Cabeza L. E. Selection of the appropriate phase change material for two innovative compact energy storage systems in residential buildings. Applied Sciences 2020:10(6):2116. https://doi.org/10.3390/app10062116 Search in Google Scholar

Batra U., Singhal S. Optimum level of insulation for energy efficient envelope of office buildings. International Journal of Env. Science and Technology 2017:14(11):2389–2398. https://doi.org/10.1007/s13762-017-1322-2 Search in Google Scholar

Ibrahim M., Biwole P. H., Achard P., Wurtz E. Aerogel-Based Materials for Improving the Building Envelope’s Thermal Behavior: A Brief Review with a Focus on a New Aerogel-Based Rendering. In Sharma A., Kar S. K. (eds.), Energy Sustainability Through Green Energy 2015:163–188. https://doi.org/10.1007/978-81-322-2337-5_7 Search in Google Scholar

Ruse A., Pubule J. The Boundaries of Scientific Innovation in the EU Green Deal Context. Environmental and Climate Technologies 2022:26(1):115–128. https://doi.org/10.2478/rtuect-2022-0010 Search in Google Scholar

Attia S., Bilir S., Safy T., Struck C., Loonen R., Goia F. Current trends and future challenges in the performance assessment of adaptive façade systems. Energy and Buildings 2018:179:165–182. https://doi.org/10.1016/j.enbuild.2018.09.017 Search in Google Scholar

Juaristi M., Gómez-Acebo T., Monge-Barrio A. Qualitative analysis of promising materials and technologies for the design and evaluation of Climate Adaptive Opaque Façades. Building and Environment 2018:144:482–501. https://doi.org/10.1016/j.buildenv.2018.08.028 Search in Google Scholar

Pranckutė R. Web of Science (WoS) and Scopus: the titans of bibliographic information in today’s academic world. Publications 2021:9(1):12. https://doi.org/10.3390/publications9010012 Search in Google Scholar

Vanaga R., Narbuts J., Freimanis R., Blumberga A. Laboratory Testing of Small Scale Solar Facade Module with Phase Change Material and Adjustable Insulation Layer. Energies 2022:15(3):1158. https://doi.org/10.3390/en15031158 Search in Google Scholar

Narbuts J., Vanaga R., Freimanis R., Blumberga A. Laboratory Testing of Small-Scale Active Solar Façade Module. Environmental and Climate Technologies 2021:25(1):455–466. https://doi.org/10.2478/rtuect-2021-0033 Search in Google Scholar

Vanaga R., Narbuts J., Freimanis R., Blumberga A. Laboratory Testing of Different Melting Temperature Phase Change Materials Under Four Season Conditions for Thermal Energy Storage in Building Envelope. Energy Proceedings 2021:22. https://doi.org/10.46855/energy-proceedings-9391 Search in Google Scholar

Bumanis G., Bajare D. PCM Modified Gypsum Hempcrete with Increased Heat Capacity for Nearly Zero Energy Buildings. Environmental and Climate Technologies 2022:26(1):524–534. https://doi.org/10.2478/rtuect-2022-0040 Search in Google Scholar

Rucevskis S., Akishin P., Korjakins A. Performance Evaluation of an Active PCM Thermal Energy Storage System for Space Cooling in Residential Buildings. Environmental and Climate Technologies 2019:23(2):74–89. https://doi.org/10.2478/rtuect-2019-0056 Search in Google Scholar

Wu D., Rahim M., El Ganaoui M., Bennacer R., Djedjig R., Liu B. Dynamic hygrothermal behavior and energy performance analysis of a novel multilayer building envelope based on PCM and hemp concrete. Construction and Building Materials 2022:341:127739. https://doi.org/10.1016/j.conbuildmat.2022.127739 Search in Google Scholar

Nguyen G. T., Hwang H. S., Lee J., Cha D. A., Park I. N-octadecane/fumed silica phase change composite as building envelope for high energy efficiency. Nanomaterials 2021:11(3):1–15. https://doi.org/10.3390/nano11030566 Search in Google Scholar

Yang Y., Wu W., Fu S., Zhang H. Study of a novel ceramsite-based shape-stabilized composite phase change material (PCM) for energy conservation in buildings. Construction and Building Materials 2020:246:118479. https://doi.org/10.1016/j.conbuildmat.2020.118479 Search in Google Scholar

Sakiyama N. R. M., Frick J., Stipetic M., Oertel T., Garrecht H. Hygrothermal performance of a new aerogel-based insulating render through weathering: Impact on building energy efficiency. Building and Environment 2021:202:108004. https://doi.org/10.1016/j.buildenv.2021.108004 Search in Google Scholar

Karim A. N., Johansson P., Kalagasidis A. S. Knowledge gaps regarding the hygrothermal and long-term performance of aerogel-based coating mortars. Construction and Building Materials 2022:314:125602. https://doi.org/10.1016/j.conbuildmat.2021.125602 Search in Google Scholar

Paulos J., Berardi U. Optimizing the thermal performance of window frames through aerogel-enhancements. Applied Energy 2020:266:114776. https://doi.org/10.1016/j.apenergy.2020.114776 Search in Google Scholar

Yue X., Wu H., Zhang T., Yang D., Qiu F. Superhydrophobic waste paper-based aerogel as a thermal insulating cooler for building. Energy 2022:245:123287. https://doi.org/10.1016/j.energy.2022.123287 Search in Google Scholar

Lei Q., Wang L., Xie H., Yu W. Active-passive dual-control smart window with thermochromic synergistic fluidic glass for building energy efficiency. Building and Environment 2022:222:109407. https://doi.org/10.1016/j.buildenv.2022.109407 Search in Google Scholar

Lin Q., Zhang Y., Van Mieghem A., Chen Y. C., Yu N., Yang Y., Yin H. Design and experiment of a sun-powered smart building envelope with automatic control. Energy and Buildings 2020:223:110173. https://doi.org/10.1016/j.enbuild.2020.110173 Search in Google Scholar

Ke Y., Tan Y., Feng C., Chen C., Lu Q., Xu Q., Wang T., Liu H., Liu X., Peng J., Long Y. Tetra-Fish-Inspired aesthetic thermochromic windows toward Energy-Saving buildings. Applied Energy 2022:315:119053. https://doi.org/10.1016/j.apenergy.2022.119053 Search in Google Scholar

Rotas R., Fotopoulou M., Drosatos P., Rakopoulos D., Nikolopoulos N. Adaptive Dynamic Building Envelopes with Solar Power Components: Annual Performance Assessment for Two Pilot Sites. Energies 2023:16(5):2148. https://doi.org/10.3390/en16052148 Search in Google Scholar

Čurpek J., Čekon M. Climate response of a BiPV façade system enhanced with latent PCM-based thermal energy storage. Renewable Energy 2020:152:368–384. https://doi.org/10.1016/j.renene.2020.01.070 Search in Google Scholar

Koukelli C., Prieto A., Asut S. Kinetic solar envelope: Performance assessment of a shape memory alloy-based autoreactive façade system for urban heat island mitigation in Athens, Greece. Applied Sciences (Switzerland) 2022:12(1):82. https://doi.org/10.3390/app12010082 Search in Google Scholar

Sadegh S. O., Gasparri E., Brambilla A., Globa A. Kinetic facades: An evolutionary-based performance evaluation framework. Journal of Building Engineering 2022:53:104408. https://doi.org/10.1016/j.jobe.2022.104408 Search in Google Scholar

Pielichowska K., Pielichowski K. Phase change materials for thermal energy storage. Progress in Materials Science 2014:65:67–123. https://doi.org/10.1016/j.pmatsci.2014.03.005 Search in Google Scholar

Lawag R. A., Ali H. M. Phase change materials for thermal management and energy storage: A review. Journal of Energy Storage 2022:55:105602. https://doi.org/10.1016/j.est.2022.105602 Search in Google Scholar

van der Winden I. Phase Change Materials: Technology and Applications. New York: Nova, 2020. Search in Google Scholar

Hussein H., Abed A. H., Abdulmunem R. An experimental investigation of using aluminum foam matrix integrated with paraffin wax as a thermal storage material in a solar heater. Presented at the 2nd Sustainable & Renewable Energy Conference, Baghdad, Iraq. 2018. Search in Google Scholar

Buratti C. Translucent Silica Aerogel: Properties, Preparation and Applications. New York: Nova, 2019. Search in Google Scholar

Buratti C., Moretti E., Belloni E. Nanogel Windows for Energy Building Efficiency BT – Nano and Biotech Based Materials for Energy Building Efficiency. In: Pacheco Torgal F., Buratti C., Kalaiselvam S., Granqvist C. G., Ivanov V. (eds). Nano and Biotech Based Materials for Energy Building Efficiency. Springer, Cham. https://doi.org/10.1007/978-3-319-27505-5_3 Search in Google Scholar

Lolli N., Andresen I. Aerogel vs. argon insulation in windows: A greenhouse gas emissions analysis. Building and Environment 2016:101:64–76. https://doi.org/10.1016/j.buildenv.2016.03.001 Search in Google Scholar

Jelle B. P., Baetens R., Gustavsen A. Chapter 45 - Aerogel Insulation for Building Applications. In: Levy D., Zayat M. The Sol-Gel Handbook. Wiley-VCH Verlag GmbH & Co. KGaA, 2015. https://doi.org/10.1002/9783527670819.ch45 Search in Google Scholar

Luo Y., Zhang L., Bozlar M., Liu Z., Guo H., Meggers F. Active building envelope systems toward renewable and sustainable energy. Renewable and Sustainable Energy Reviews 2019:104:470–491. https://doi.org/10.1016/j.rser.2019.01.005 Search in Google Scholar

Shahin H. S. M. Adaptive building envelopes of multistory buildings as an example of high performance building skins. Alexandria Engineering Journal 2019:58(1):345–352. https://doi.org/10.1016/j.aej.2018.11.013 Search in Google Scholar

Tabadkani A., Roetzel A., Li H. X., Tsangrassoulis A. Design approaches and typologies of adaptive facades: A review. Automation in Construction 2021:121:103450. https://doi.org/10.1016/j.autcon.2020.103450 Search in Google Scholar

Voigt M. P., Chwalek K., Roth D., Kreimeyer M., Blandini L. The integrated design process of adaptive façades – A comprehensive perspective. Journal of Building Engineering 2023:67:106043. https://doi.org/10.1016/j.jobe.2023.106043 Search in Google Scholar

Mols T., Blumberga A. Inverse modelling of climate adaptive building shells. System dynamics approach. Environmental and Climate Technologies 2020:24(2):170–177. https://doi.org/10.2478/rtuect-2020-0064 Search in Google Scholar

eISSN:
2255-8837
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Life Sciences, other