Otwarty dostęp

Bibliometric Review of State-of-the-art Research on Microbial Oils’ Use for Biobased Epoxy


Zacytuj

Jelić A. et al. Determination of Mechanical Properties of Epoxy Composite Materials Reinforced with Silicate Nanofillers Using Digital Image Correlation (DIC). Polymers 2022:14(6):1255. https://doi.org/10.3390/polym14061255 Search in Google Scholar

Atmakuri A., Palevicius A., Kolli L., Vilkauskas A., Janusas G., Puglia D. Development and Analysis of Mechanical Properties of Caryota and Sisal Natural Fibers Reinforced Epoxy Hybrid Composites. Polymers 2021:13(6):864. https://doi.org/10.3390/polym13060864 Search in Google Scholar

Korolev A., Mishnev M., Zherebtsov D., Vatin N. I., Karelina M., Arjmand M. Polymers under Load and Heating Deformability: Modelling and Predicting. Polymers 2021:13(3):428. https://doi.org/10.3390/polym13030428 Search in Google Scholar

Zhang W., et al. Core-Shell Graphitic Carbon Nitride/Zinc Phytate as a Novel Efficient Flame Retardant for Fire Safety and Smoke Suppression in Epoxy Resin. Polymers 2020:12(1):212. https://doi.org/10.3390/polym12010212 Search in Google Scholar

Rodríguez-Uicab O., Abot J. L., Avilés F. Electrical Resistance Sensing of Epoxy Curing Using an Embedded Carbon Nanotube Yarn. Sensors 2020:20(11):3230. https://doi.org/10.3390/s20113230 Search in Google Scholar

Formela K., et al. Sound Insulation Properties of Hollow Polystyrene Spheres/Polyethylene Glycol/Epoxy Composites. Polymers 2022:14(7):1388. https://doi.org/10.3390/polym14071388 Search in Google Scholar

Sukanto H., Raharjo W. W., Ariawan D., Triyono J., Kaavesina M. Epoxy resins thermosetting for mechanical engineering. Open Eng. 2021:11(1):797–814. https://doi.org/10.1515/eng-2021-0078 Search in Google Scholar

Van Fan Y., Lee C. T., Lim J. S., Klemeš J. J., Le P. T. K. Cross-disciplinary approaches towards smart, resilient and sustainable circular economy. J. Clean. Prod. 2019:232:1482–1491. https://doi.org/10.1016/j.jclepro.2019.05.266 Search in Google Scholar

Liu S., Chevali V. S., Xu Z., Hui D., Wang H. A review of extending performance of epoxy resins using carbon nanomaterials. Compos. Part B Eng. 2018:136:197–214. https://doi.org/10.1016/j.compositesb.2017.08.020 Search in Google Scholar

Di Mauro C., Malburet S., Genua A., Graillot A., Mija A. Sustainable Series of New Epoxidized Vegetable Oil-Based Thermosets with Chemical Recycling Properties. Biomacromolecules 2020:21(9):3923–3935. https://doi.org/10.1021/acs.biomac.0c01059 Search in Google Scholar

Zhao X. L., Liu Y. Y., Weng Y., Li Y. D., Zeng J. B. Sustainable Epoxy Vitrimers from Epoxidized Soybean Oil and Vanillin. ACS Sustain. Chem. Eng. 2020:8(39):15020–15029. https://doi.org/10.1021/acssuschemeng.0c05727 Search in Google Scholar

Auvergne R., Caillol S., David G., Boutevin B., Pascault J. P. Biobased thermosetting epoxy: Present and future. Chem. Rev. 2014:114(2):1082–1115. https://doi.org/10.1021/cr3001274 Search in Google Scholar

Ding C., Matharu A. S. Recent developments on biobased curing agents: A review of their preparation and use. ACS Sustain. Chem. Eng. 2014:2(10):2217–2236. https://doi.org/10.1021/sc500478f Search in Google Scholar

Shanmugam V., et al. Circular economy in biocomposite development: State-of-the-art, challenges and emerging trends. Compos. Part C Open Access 2021:5:100138. https://doi.org/10.1016/j.jcomc.2021.100138 Search in Google Scholar

Spalvins K., Blumberga D. Single cell oil production from waste biomass: Review of applicable agricultural byproducts. Agron. Res. 2019:17(3):833–849. https://doi.org/10.15159/ar.19.039 Search in Google Scholar

Jin F. L., Li X., Park S. J. Synthesis and application of epoxy resins: A review. J. Ind. Eng. Chem. 2015:29:1–11. https://doi.org/10.1016/j.jiec.2015.03.026 Search in Google Scholar

Negrell C., Cornille A., Andrade Nascimento de P., Robin J. J., Caillol S. New bio-based epoxy materials and foams from microalgal oil. Eur. J. Lipid Sci. Technol. 2017:119(4):1600214. https://doi.org/10.1002/ejlt.201600214 Search in Google Scholar

Uglea C. V., Negulescu I. I. Synthesis and characterization of oligomers. CRC Press, 1991. Search in Google Scholar

Fiege H., et al. Phenol Derivatives. Ullmann’s Encycl. Ind. Chem. 2000. https://doi.org/10.1002/14356007.a19_313 Search in Google Scholar

MacKay H., Abizaid A. A plurality of molecular targets: The receptor ecosystem for bisphenol-A (BPA). Horm. Behav. 2018:101:59–67. https://doi.org/10.1016/j.yhbeh.2017.11.001 Search in Google Scholar

O’Connor J. C., Chapin R. E. Critical evaluation of observed adverse effects of endocrine active substances on reproduction and development, the immune system, and the nervous system. Pure Appl. Chem. 2003:75(11–12):2099–2123. https://doi.org/10.1351/pac200375112099 Search in Google Scholar

Okada H., Tokunaga T., Liu X., Takayanagi S., Matsushima A., Shimohigashi Y. Direct evidence revealing structural elements essential for the high binding ability of bisphenol a to human estrogen-related receptor-γ. Environ. Health Perspect. 2008:116(1):32–38. https://doi.org/10.1289/ehp.10587 Search in Google Scholar

vom Saal F. S., Hughes C. An extensive new literature concerning low-dose effects of bisphenol A shows the need for a new risk assessment. Environ. Health Perspect. 2005:113(8):926–933. https://doi.org/10.1289/ehp.7713 Search in Google Scholar

Ertl J. Fully bio-based epoxy resins. Alma Mater Studiorum Università di Bologna, 2015. Search in Google Scholar

DOW Epichlorohydrin Product Stewardship Manual Safe Handling and Storage English. Epoxy. Chemical Compounds. DC, 2007. Search in Google Scholar

CDC – NIOSH Pocket Guide to Chemical Hazards-Epichlorohydrin. [Online]. [Accessed: 15.07.2022]. Available: https://www.cdc.gov/niosh/npg/npgd0254.html Search in Google Scholar

Ayushi Choudhary E. P. Allied Market Research, Epoxy Resin Market forecast 2020–2027. AMR, 2020. Search in Google Scholar

Frankowski R., Zgoła-Grześkowiak A., Grześkowiak T., Sójka K. The presence of bisphenol A in the thermal paper in the face of changing European regulations – A comparative global research. Environ. Pollut. 2020:265:114879. https://doi.org/10.1016/j.envpol.2020.114879 Search in Google Scholar

Meier M. A. R., Metzger J. O., Schubert U. S. Plant oil renewable resources as green alternatives in polymer science. Chem. Soc. Rev. 2007:36(11):1788–1802. https://doi.org/10.1039/b703294c Search in Google Scholar

Kim J. R., Sharma S. The development and comparison of bio-thermoset plastics from epoxidized plant oils. Ind. Crops Prod. 2012:36(1):485–499. https://doi.org/10.1016/j.indcrop.2011.10.036 Search in Google Scholar

Pawar M., Kadam A., Yemul O., Thamke V., Kodam K. Biodegradable bioepoxy resins based on epoxidized natural oil (cottonseed & algae) cured with citric and tartaric acids through solution polymerization: A renewable approach. Ind. Crops Prod. 2016:89:434–447. https://doi.org/10.1016/j.indcrop.2016.05.025 Search in Google Scholar

Allasia M., et al. New insights into the properties of alkali-degradable thermosets based on epoxidized soy oil and plant-derived dicarboxylic acids. Polymer (Guildf). 2021:232:124143. https://doi.org/10.1016/j.polymer.2021.124143 Search in Google Scholar

Petrović Z. S., Hong J., Lovrić Vuković M., Djonlagić J. Epoxy resins and composites from epoxidized linseed oil copolymers with cyclohexene oxide. Biocatal. Agric. Biotechnol. 2022:39:102269. https://doi.org/10.1016/j.bcab.2021.102269 Search in Google Scholar

Todorovic A., Blößl Y., Oreski G., Resch-Fauster K. High-performance composite with 100% bio-based carbon content produced from epoxidized linseed oil, citric acid and flax fiber reinforcement. Compos. Part A Appl. Sci. Manuf. 2022:152:106666. https://doi.org/10.1016/j.compositesa.2021.106666 Search in Google Scholar

Chen Y., Xi Z., Zhao L. New bio-based polymeric thermosets synthesized by ring-opening polymerization of epoxidized soybean oil with a green curing agent. Eur. Polym. J. 2016:84:435–447. https://doi.org/10.1016/j.eurpolymj.2016.08.038 Search in Google Scholar

Huang X., Yang X., Liu H., Shang S., Cai Z., Wu K. Bio-based thermosetting epoxy foams from epoxidized soybean oil and rosin with enhanced properties. Ind. Crops Prod. 2019:139:111540. https://doi.org/10.1016/j.indcrop.2019.111540 Search in Google Scholar

Gobin M., Loulergue P., Audic J. L., Lemiègre L. Synthesis and characterisation of bio-based polyester materials from vegetable oil and short to long chain dicarboxylic acids. Ind. Crops Prod. 2015:70:213–220. https://doi.org/10.1016/j.indcrop.2015.03.041 Search in Google Scholar

Uprety B. K., Reddy J. V., Dalli S. S., Rakshit S. K. Utilization of microbial oil obtained from crude glycerol for the production of polyol and its subsequent conversion to polyurethane foams. Bioresour. Technol. 2017:235:309–315. https://doi.org/10.1016/j.biortech.2017.03.126 Search in Google Scholar

Pawar M. S., Kadam A. S., Dawane B. S., Yemul O. S. Synthesis and characterization of rigid polyurethane foams from algae oil using biobased chain extenders. Polym. Bull. 2015:73(3):727–741. https://doi.org/10.1007/s00289-015-1514-1 Search in Google Scholar

Petrović Z. S., et al. Polyols and Polyurethanes from Crude Algal Oil. J. Am. Oil Chem. Soc. 2013:90(7):1073–1078. https://doi.org/10.1007/s11746-013-2245-9 Search in Google Scholar

Arbenz A., Perrin R., Avérous L. Elaboration and Properties of Innovative Biobased PUIR Foams from Microalgae. J. Polym. Environ. 2017:26(1):254–262. https://doi.org/10.1007/s10924-017-0948-y Search in Google Scholar

Radojčić D., Hong J., Ionescu M., Wan X., Javni I., Petrović Z. S. Study on the reaction of amines with internal epoxides. Eur. J. Lipid Sci. Technol. 2016:118(10):1507–1511. https://doi.org/10.1002/ejlt.201500490 Search in Google Scholar

Roy Chong J. W., et al. Microalgae-based bioplastics: Future solution towards mitigation of plastic wastes. Environ. Res. 2022:206:112620. https://doi.org/10.1016/j.envres.2021.112620 Search in Google Scholar

Qi Y., et al. Facile synthesis of bio-based tetra-functional epoxy resin and its potential application as high-performance composite resin matrix. Compos. Part B Eng. 2021:214:108749. https://doi.org/10.1016/j.compositesb.2021.108749 Search in Google Scholar

Hidalgo P., Álvarez S., Hunter R., Sánchez A. Epoxidation of Fatty Acid Methyl Esters Derived from Algae Biomass to Develop Sustainable Bio-Based Epoxy Resins. Polymers 2020:12(10):2313. https://doi.org/10.3390/polym12102313 Search in Google Scholar

Ortiz P., Vendamme R., Eevers W. Fully Biobased Epoxy Resins from Fatty Acids and Lignin. Molecules 2020:25(5):1158. https://doi.org/10.3390/molecules25051158 Search in Google Scholar

Bunekar N., Tsai T. Y. Chapter 4-Bio-based nanomaterials for properties and applications. Bio-Based Nanomater. Synth. Protoc. Mech. Appl. 2022:67–72. https://doi.org/10.1016/B978-0-323-85148-0.00001-4 Search in Google Scholar

Hottle T. A., Bilec M. M., Landis A. E. Sustainability assessments of bio-based polymers. Polym. Degrad. Stab. 2013:98(9):1898–1907. https://doi.org/10.1016/j.polymdegradstab.2013.06.016 Search in Google Scholar

Sala S., Reale F., Cristóbal-García J., Marelli L., Rana P. Life cycle assessment for the impact assessment of policies. Life thinking and assessment in the European policies and for evaluating policy options. Jt. Res. Cent. 2016:28380:53. https://doi.org/10.2788/318544 Search in Google Scholar

Arias A., González-García S., González-Rodríguez S., Feijoo G., Moreira M. T. Cradle-to-gate Life Cycle Assessment of bio-adhesives for the wood panel industry. A comparison with petrochemical alternatives. Sci. Total Environ. 2020:738:140357. https://doi.org/10.1016/j.scitotenv.2020.140357 Search in Google Scholar

Beckstrom B. D., Wilson M. H., Crocker M., Quinn J. C. Bioplastic feedstock production from microalgae with fuel co-products: A techno-economic and life cycle impact assessment. Algal Res. 2020:46:101769. https://doi.org/10.1016/j.algal.2019.101769 Search in Google Scholar

Carroccio S. C., Scarfato P., Bruno E., Aprea P., Dintcheva N. T., Filippone G. Impact of nanoparticles on the environmental sustainability of polymer nanocomposites based on bioplastics or recycled plastics – A review of life-cycle assessment studies. J. Clean. Prod. 2022:335:130322. https://doi.org/10.1016/j.jclepro.2021.130322 Search in Google Scholar

Venkata Subhash G., et al. Challenges in microalgal biofuel production: A perspective on techno economic feasibility under biorefinery stratagem. Bioresour. Technol. 2022:343:126155. https://doi.org/10.1016/j.biortech.2021.126155 Search in Google Scholar

Chia S. R., Nomanbhay S. B. H. M., Chew K. W., Munawaroh H. S. H., Shamsuddin A. H., Show P. L. Algae as potential feedstock for various bioenergy production. Chemosphere 2022:287:131944. https://doi.org/10.1016/j.chemosphere.2021.131944 Search in Google Scholar

Guenka Scarcelli P., et al. Integration of algae-based sewage treatment with anaerobic digestion of the bacterial-algal biomass and biogas upgrading. Bioresour. Technol. 2021:340:125552. https://doi.org/10.1016/j.biortech.2021.125552 Search in Google Scholar

Kowthaman C. N., Arul Mozhi Selvan V., Senthil Kumar P. Optimization strategies of alkaline thermo-chemical pretreatment for the enhance ment of biogas production from de-oiled algae. Fuel 2021:303:121242. https://doi.org/10.1016/j.fuel.2021.121242 Search in Google Scholar

Assacute L., Romagnoli F., Cappelli A., Ciocci C. Algae-based biorefinery concept: an LCI analysis for a theoretical plant. Energy Procedia 2018:147:15–24. https://doi.org/10.1016/j.egypro.2018.07.028 Search in Google Scholar

Kowthaman C. N., Arul Mozhi Selvan V. Waste to green fuels: Kinetic study of low lipid waste algae for energy development. Bioresour. Technol. Reports 2020:11:100510. https://doi.org/10.1016/j.biteb.2020.100510 Search in Google Scholar

Pastare L., Romagnoli F., Blumberga D. Comparison of biomethane potential lab tests for Latvian locally available algae. Energy Procedia 2018:147:277–281. https://doi.org/10.1016/j.egypro.2018.07.092 Search in Google Scholar

Karimian A., Mahdavi M. A., Gheshlaghi R. Algal cultivation strategies for enhancing production of Chlorella sorokiniana IG-W-96 biomass and bioproducts. Algal Res. 2022:62:102630. https://doi.org/10.1016/j.algal.2022.102630 Search in Google Scholar

Stemmelen M., Pessel F., Lapinte V., Caillol S., Habas J. P., Robin J. J. A fully biobased epoxy resin from vegetable oils: From the synthesis of the precursors by thiol-ene reaction to the study of the final material. J. Polym. Sci. Part A Polym. Chem. 2011:49(11):2434–2444. https://doi.org/10.1002/pola.24674 Search in Google Scholar

Doǧan E., Küsefoǧlu S. Synthesis and in situ foaming of biodegradable malonic acid ESO polymers. J. Appl. Polym. Sci. 2008:110(2):1129–1135. https://doi.org/10.1002/app.28708 Search in Google Scholar

La Scala J., Wool R. P. Fundamental thermo-mechanical property modeling of triglyceride-based thermosetting resins. J. Appl. Polym. Sci. 2013:127(3):1812–1826. https://doi.org/10.1002/app.37927 Search in Google Scholar

Hultberg M., Jönsson H. L., Bergstrand K. J., Carlsson A. S. Impact of light quality on biomass production and fatty acid content in the microalga Chlorella vulgaris. Bioresour. Technol. 2014:159:465–467. https://doi.org/10.1016/j.biortech.2014.03.092 Search in Google Scholar

Tan X. B., et al. Semi-continuous cultivation of Chlorella vulgaris using chicken compost as nutrients source: Growth optimization study and fatty acid composition analysis. Energy Convers. Manag. 2018:164:363–373. https://doi.org/10.1016/j.enconman.2018.03.020 Search in Google Scholar

Ren L. J., Li J., Hu Y. W., Ji X. J., Huang H. Utilization of cane molasses for docosahexaenoic acid production by Schizochytrium sp. CCTCC M209059. Korean J. Chem. Eng. 2013:30(4):787–789. https://doi.org/10.1007/s11814-013-0020-0 Search in Google Scholar

Park W. K., et al. Economical DHA (Docosahexaenoic acid) production from Aurantiochytrium sp. KRS101 using orange peel extract and low cost nitrogen sources. Algal Res. 2018:29:71–79. https://doi.org/10.1016/j.algal.2017.11.017 Search in Google Scholar

Ledesma-Amaro R., Nicaud J. M. Yarrowia lipolytica as a biotechnological chassis to produce usual and unusual fatty acids. Prog. Lipid Res. 2016:61:40–50. https://doi.org/10.1016/j.plipres.2015.12.001 Search in Google Scholar

Papanikolaou S., Chevalot I., Komaitis M., Aggelis G., Marc I. Kinetic profile of the cellular lipid composition in an oleaginous Yarrowia lipolytica capable of producing a cocoa-butter substitute from industrial fats. Antonie van Leeuwenhoek 2001:80(3):215–224. https://doi.org/10.1023/A:1013083211405 Search in Google Scholar

Fakas S., Makri A., Mavromati M., Tselepi M., Aggelis G. Fatty acid composition in lipid fractions lengthwise the mycelium of Mortierella isabellina and lipid production by solid state fermentation. Bioresour. Technol. 2009:100(23):6118–6120. https://doi.org/10.1016/j.biortech.2009.06.015 Search in Google Scholar

Vamvakaki A. N., Kandarakis I., Kaminarides S., Komaitis M., Papanikolaou S. Cheese whey as a renewable substrate for microbial lipid and biomass production by Zygomycetes. Eng. Life Sci. 2010:10(4):348–360. https://doi.org/10.1002/elsc.201000063 Search in Google Scholar

Gouda M. K., Omar S. H., Aouad L. M. Single cell oil production by Gordonia sp. DG using agro-industrial wastes. World J. Microbiol. Biotechnol. 2008:24(9):1703–1711. https://doi.org/10.1007/s11274-008-9664-z Search in Google Scholar

Spalvins K., Vamza I., Blumberga D. Single Cell Oil Production from Waste Biomass: Review of Applicable Industrial By-Products. Environ. Clim. Technol. 2019:23(2):325–337. https://doi.org/10.2478/rtuect-2019-0071 Search in Google Scholar

Spalvins K., Blumberga D. Production of Fish Feed and Fish Oil from Waste Biomass Using Microorganisms: Overview of Methods Analyzing Resource Availability. Environ. Clim. Technol. 2018:22(1):149–164. https://doi.org/10.2478/rtuect-2018-0010 Search in Google Scholar

Roesle P., et al. Synthetic Polyester from Algae Oil. Angew. Chemie Int. Ed. 2014:53(26):6800–6804. https://doi.org/10.1002/anie.201403991 Search in Google Scholar

Hidalgo P., Navia R., Hunter R., Gonzalez M. E., Echeverría A. Development of novel bio-based epoxides from microalgae Nannochloropsis gaditana lipids. Compos. Part B Eng. 2019:166:653–662. https://doi.org/10.1016/j.compositesb.2019.02.049 Search in Google Scholar

Yang D., et al. Preparation and characterization of epoxidized microbial oil. Korean J. Chem. Eng. 2016:33(3):964–971. https://doi.org/10.1007/s11814-015-0216-6 Search in Google Scholar

eISSN:
2255-8837
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Life Sciences, other