1. bookTom 27 (2023): Zeszyt 1 (January 2023)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2255-8837
Pierwsze wydanie
26 Mar 2010
Częstotliwość wydawania
2 razy w roku
Języki
Angielski
Otwarty dostęp

Transportation Biofuels in Latvia: A Life Cycle Thinking Approach

Data publikacji: 20 Jan 2023
Tom & Zeszyt: Tom 27 (2023) - Zeszyt 1 (January 2023)
Zakres stron: 40 - 55
Otrzymano: 23 Dec 2021
Przyjęty: 21 Feb 2022
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2255-8837
Pierwsze wydanie
26 Mar 2010
Częstotliwość wydawania
2 razy w roku
Języki
Angielski

[1] Latvian Environment, Geology and Meteorology Centre, Institute of Physical Energetics, Latvian State Forest Research Institute ‘Silava’, Latvia University of Life Sciences and Technologies, Ministry of Environmental Protection and Regional Development of the Republic of Latvia, Latvia’s National Inventory Report. 2019:91:511. Search in Google Scholar

[2] Ahlgren E. 0., Borjesson Hagbeg M., Grahn M. Transport biofuels in global energy – economy modelling – a review of comprehensive energ y systems assessment approaches. GCB Bioenergy 2017:9(7):1168–1180. https://doi.org/10.1111/gcbb.1243110.1111/gcbb.12431 Search in Google Scholar

[3] Balat M. Potential alternatives to edible oils for biodiesel production – A review of current work. Energy Convers. Manag. 2011:52(2):1479–1492. https://doi.org/10.1016/j.enconman.2010.10.01110.1016/j.enconman.2010.10.011 Search in Google Scholar

[4] Balat M. Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Convers. Manag. 2011:52(2):858–875. https://doi.org/10.1016/j.enconman.2010.08.01310.1016/j.enconman.2010.08.013 Search in Google Scholar

[5] Blumberga D., Veidenbergs I., Romagnoli F., Rochas C., Žandeckis A. Bioenerģijas tehnoloģijas. (Bioenergy technologies). Riga, Institute of Energy Systems and Environment (IESE). 2011. (In Latvian). Search in Google Scholar

[6] Rodionova M. V. et al. Biofuel production: Challenges and opportunities ScienceDirect Biofuel production: Challenges and opportunities. International Journal of Hydrogen Energy 2017:42(12):8450–8461. https://doi.org/10.1016/j.ijhydene.2016.11.12510.1016/j.ijhydene.2016.11.125 Search in Google Scholar

[7] Kothari R. Algal-based biofuel generation through flue gas and wastewater utilization: a sustainable prospective approach. Biomass Conv. Bioref. 2021:11:1419–1442. https://doi.org/10.1007/s13399-019-00533-y10.1007/s13399-019-00533-y Search in Google Scholar

[8] Darda S., Papalas T., Zabaniotou A. Biofuels journey in Europe: Currently the way to low carbon economy sustainability is still a challenge. J. Clean. Prod. 2019:208:575–588. https://doi.org/10.1016/j.jclepro.2018.10.14710.1016/j.jclepro.2018.10.147 Search in Google Scholar

[9] Oh Y. K., Hwang K. R., Kim C., Kim J. R., Lee J. S. Recent developments and key barriers to advanced biofuels: A short review. Bioresour. Technol. 2018:257:320–333. https://doi.org/10.1016/j.biortech.2018.02.08910.1016/j.biortech.2018.02.08929523378 Search in Google Scholar

[10] Directive (EU) 2018/2001 of the European Parliament and of the Council on the promotion of the use of energy from renewable sources. Official Journal of European Union L 328/82. Search in Google Scholar

[11] LowCVP. NNFCC, Advanced Biofuel Pathways. Search in Google Scholar

[12] Sanna A. Advanced Biofuels from Thermochemical Processing of Sustainable Biomass in Europe. Bioenergy Research 2014:7:36–47. https://doi.org/10.1007/s12155-013-9378-410.1007/s12155-013-9378-4 Search in Google Scholar

[13] Krishna B. B., Biswas B., Bhaskar T. Chapter 12- Gasification of Lignocellulosic Biomass. Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels (Second Edition) 2019:285–300. https://doi.org/10.1016/B978-0-12-816856-1.00012-910.1016/B978-0-12-816856-1.00012-9 Search in Google Scholar

[14] Pandey E. A., Bhaskar T., Stocker M., Sukumaran R. K., Jakab E. Chapter 3 - Analytical Techniques as a Tool to Understand the Reaction Mechanism. Recent Advances in Thermo-Chemical Conversion of Biomass 2015:75–108. https://doi.org/10.1016/B978-0-444-63289-0.00003-X10.1016/B978-0-444-63289-0.00003-X Search in Google Scholar

[15] Mythili R., Venkatachalam P., Subramanian P., Uma D. Characterization of bioresidues for biooil production through pyrolysis. Bioresour. Technol. 2013:138:71–78. https://doi.org/10.1016/j.biortech.2013.03.16110.1016/j.biortech.2013.03.16123612164 Search in Google Scholar

[16] Dimitriadis A., Bezergianni S. Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production: A state of the art review. Renewable and Sustainable Energy Reviews 2017:68:113–125. https://doi.org/10.1016/j.rser.2016.09.12010.1016/j.rser.2016.09.120 Search in Google Scholar

[17] Sonthalia A., Kumar N. Hydroprocessed vegetable oil as a fuel for transportation sector: A review. Journal of the Energy Institute 2019:92(1):1–17. https://doi.org/10.1016/j.joei.2017.10.00810.1016/j.joei.2017.10.008 Search in Google Scholar

[18] Nguyen D., Nitayavardhana S., Sawatdeenarunat C., Surendra K. C. Chapter 31 - Biogas Production by Anaerobic Digestion: Status and Perspectives. Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels (Second Edition) 2019:763–778. https://doi.org/10.1016/B978-0-12-816856-1.00031-210.1016/B978-0-12-816856-1.00031-2 Search in Google Scholar

[19] Soccol C. R., Faraco V., Karp S. G., Vandenberghe L. P. S., Thomaz-Soccol V., Woiciechowski A. L., Pandey A. Chapter 14 - Lignocellulosic Bioethanol: Current Status and Future Perspectives. Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels (Second Edition) 2019:331–354. https://doi.org/10.1016/B978-0-12-816856-1.00014-210.1016/B978-0-12-816856-1.00014-2 Search in Google Scholar

[20] Mohapatra S., Mishra C., Behera S.S., Thatoi H. Application of pretreatment, fermentation and molecular techniques for enhancing bioethanol production from grass biomass – A review. Renewable and Sustainable Energy Reviews 2017:78:1007-1032 https://doi.org/10.1016/j.rser.2017.05.02610.1016/j.rser.2017.05.026 Search in Google Scholar

[21] Twidell J., Weir T. Biomass and biofuels. 532 (2006) Chapter 11. Search in Google Scholar

[22] Sun P., Sun J., Yao J., Zhang L., Xu N. Continuous production of biodiesel from high acid value oils in microstructured reactor by acid-catalyzed reactions. Chem. Eng. J. 2010:162(1):364–370. https://doi.org/10.1016/j.cej.2010.04.06410.1016/j.cej.2010.04.064 Search in Google Scholar

[23] Electrolysis, Lumen. [Online]. [Accessed: 7 December 2020]. Available: https://courses.lumenlearning.com/boundless-chemistry/chapter/electrolysis/ Search in Google Scholar

[24] Alavijeh M. K., Yaghmaei S., Mardanpour M. M. Assessment of Global Potential of Biohydrogen Production from Agricultural Residues and Its Application in Nitrogen Fertilizer Production. Bioenergy Research 2020:13:463–476. https://doi.org/10.1007/s12155-019-10046-110.1007/s12155-019-10046-1 Search in Google Scholar

[25] Müller-Langer F., Kaltschmitt M. Biofuels from lignocellulosic biomass – a multi-criteria approach for comparing overall concepts. Biomass Conv. Bioref. 2015:5:43–61. https://doi.org/10.1007/s13399-014-0125-710.1007/s13399-014-0125-7 Search in Google Scholar

[26] ISO 14044 Environmental management – life cycle assessment –requirements and guidelines. Int Organ Stand Geneva. [Online]. [Accessed: 7 December 2020]. Available: https://www.iso.org/standard/ Search in Google Scholar

[27] Pré Consultants. Life cycle assessment n.d. [Online]. [Accessed: 13 December 2020]. Available: http://www.presustainability.com Search in Google Scholar

[28] Haase M., Babenhauserheide N., Rösch C. Multi criteria decision analysis for sustainability assessment of 2nd generation biofuels. Procedia CIRP 2020:90:226–231. https://doi.org/10.1016/j.procir.2020.02.12410.1016/j.procir.2020.02.124 Search in Google Scholar

[29] Widheden J., Ringström E. Life Cycle Assessment. Handb. Cleaning/Decontamination Surfaces 2007:2:695–720. https://doi.org/10.1016/B978-044451664-0/50021-810.1016/B978-044451664-0/50021-8 Search in Google Scholar

[30] Cao C. Sustainability and life assessment of high strength natural fibre composites in construction. Advanced High Strength Natural Fibre Composites in Construction 2017:529–544. https://doi.org/10.1016/B978-0-08-100411-1.00021-210.1016/B978-0-08-100411-1.00021-2 Search in Google Scholar

[31] Humbert S., Scryver A. D., Margni M., Jolliet O. IMPACT 2002+, User Guide draft for version Q2.2 (version adapted by Quantis), Quantis Sustain. Counts. 2, 2012:1-36. Search in Google Scholar

[32] European Commission. Low carbon energy observatory. Sustainable advanced biofuels. Technology market report. 2019. Search in Google Scholar

[33] IEA Bioenergy. Advanced Biofuels – Potential for Cost Reduction. [Online]. [Accessed: 7 December 2020]. Available: https://www.ieabioenergy.com/blog/publications/new-publication-advanced-biofuels-potential-for-cost-reduction/ Search in Google Scholar

[34] Don O’Connor. Advanced Biofuels – GHG Emissions and Energy Balances. A report to IEA bioenergy task 39. 2013. [Online]. [Accessed: 7 December 2020]. http://task39.org/files/2013/05/Energy-and-GHG-Emissions-IEABioenergy-T39-Report-May-2013-rev.pdf Search in Google Scholar

[35] Muller-Langer F., Majer S., S. O ‘Keeffe, Benchmarking biofuels—a comparison of technical, economic and environmental indicators. Energy, Sustainabillity and Society 2014:4:Art20. https://doi.org/10.1186/s13705-014-0020-x10.1186/s13705-014-0020-x Search in Google Scholar

[36] Verones F. et al. LCIA framework and cross-cutting issues guidance within the UNEP-SETAC Life Cycle Initiative. Journal of Cleaner Production 2017:161:957–967. https://doi.org/10.1016/j.jclepro.2017.05.20610.1016/j.jclepro.2017.05.206725252232461713 Search in Google Scholar

[37] Iribarren D., Susmozas A., Dufour J. Life-cycle assessment of Fischer-Tropsch products from biosyngas. Renew. Energy 2013:59:229–236. https://doi.org/10.1016/j.renene.2013.04.00210.1016/j.renene.2013.04.002 Search in Google Scholar

[38] Djomo S. N., Blumberga D. Comparative life cycle assessment of three biohydrogen pathways. Bioresour. Technol. 2011:102(3):2684–2694. https://doi.org/10.1016/j.biortech.2010.10.13910.1016/j.biortech.2010.10.13921112211 Search in Google Scholar

[39] Show K.-Y., Yan Y.-G., Lee D.-J. Biohydrogen Production: Status and Perspectives. Biofuels Altern. Feed. Convers. Process. Prod. Liq. Gaseous Biofuels 2019:693–713. https://doi.org/10.1016/B978-0-12-816856-1.00028-210.1016/B978-0-12-816856-1.00028-2 Search in Google Scholar

[40] European Commission. Directorate-General for Mobility and Transport. Building up the future, cost of biofuel: sub group on advanced biofuels: sustainable transport forum, 2018. https://data.europa.eu/doi/10.2832/163774 Search in Google Scholar

[41] Kolb O., Siegemund S., Aizpun A. T. Study on the Implementation of Article 7(3) of the ‘Directive on the Deployment of Alternative Fuels Infrastructure – Fuel Price Comparison.’ 2017:7(3). Search in Google Scholar

[42] Charles C., et al. Biofuels—At What Cost? A review of costs and benefits of EU biofuel policies. 2013. Available: https://www.iisd.org/gsi/sites/default/files/biofuels_subsidies_eu_review.pdf Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo